Projects per year
Personal profile
Biography
Career
- 1997 - 2001 MBiochem, St-Catherine's College, Oxford University, UK
- 2001 - 2005 DPhil, Department of Plant Sciences, Oxford University, UK
- 2005 - 2011 Postdoctoral researcher, Biozentrum, University of Basel, CH
- 2011 - present Synergy Lecturer in Plant and Microbial Science, UEA/JIC, UK
ResearcherID
http://www.researcherid.com/rid/G-8319-2011Key Research Interests
My group studies the molecular mechanisms underlying bacterial signal transduction during responses to the environment. To achieve this we employ a range of processes including genetics, cell and molecular microbiology and biochemistry. Our current research focuses on the control of rhizosphere colonisation by the widespread Gram-negative bacterium Pseudomonas fluorescens.
Biocontrol agents; soil microorganisms that promote plant growth and/or suppress pathogens represent an attractive potential alternative to existing chemical pesticides. The commensal soil bacterium Pseudomonas fluorescens is a prominent biocontrol species that forms beneficial relationships with plants and suppresses fungal growth. The effectiveness of biocontrol is directly related to the effectiveness of bacterial rhizosphere colonisation. However, despite much research into biocontrol by P. fluorescens, the internal signalling systems within the bacteria that control root colonisation are only poorly understood. Recent work from our laboratory and others has identified an important role for the ubiquitous bacterial second messenger cyclic-di-GMP in the control of P. fluorescens root colonisation. Cyclic-di-GMP is found in almost every bacterial species on Earth, and is a critical component of the microbial decision-making machinery that controls when, where and how bacteria initiate biofilm formation, progress through the cell cycle, produce and secrete secondary metabolites or regulate motility and virulence factors.
In my previous laboratory, we used in-vitro expression technology (IVET) to identify a range of P. fluorescens genes that are specifically up-regulated in the rhizosphere. These include potential cdG targets such as the wss exopolysaccharide synthase operon, as well as several cdG-related operons. We have since shown that these rhizosphere up-regulated cdG systems control important aspects of bacterial behaviour, including attachment to plant roots and swarming motility. At least one system appears to be crucial for the effective colonisation of the wheat rhizosphere. My group is currently working to functionally characterise these cdG systems, with the overall aim of constructing an integrated molecular model for cdG signalling during the process of P. fluorescens rhizosphere colonisation.
Current Research Projects
- Functional characterisation of a central regulator of Pseudomonas fluorescens rhizosphere colonisation
- Analysis of the cyclic-di-GMP network regulating wheat rhizosphere colonisation by Pseudomonas fluorescens.
PhD Positions
Click here for current PhD opportunities in Biological Sciences. But feel free to email me to discuss projects outside these areas and alternative sources of funding.
Teaching Interests
- BIO-1A03 (Practical course).
Network
Projects
- 9 Finished
-
Plasmid manipulation of bacterial gene regulatory networks
Brocklehurst, M. & Malone, J.
Biotechnology and Biological Sciences Research Council
1/12/18 → 30/06/21
Project: Research
-
Identifying natural biocontrol products for PsaV from infected orchards
Malone, J. & Truman, A.
1/10/18 → 30/09/21
Project: Research
-
Using an innovative CRISPR Guided Vector technology to prevent and disrupt biofilms in the food chain and humans
Fuchs, E. & Malone, J.
1/04/18 → 31/03/19
Project: Research
-
Structural insights into the mechanism of adaptive ribosomal modification by Pseudomonas RimK
Thompson, C. M. A., Little, R. H., Stevenson, C. E. M., Lawson, D. M. & Malone, J. G., Mar 2023, In: Proteins: Structure, Function, and Bioinformatics. 91, 3, p. 300-314 15 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile3 Downloads (Pure) -
Diversity, detection and exploitation: linking soil fungi and plant disease
Bollmann-Giolai, A., Malone, J. G. & Arora, S., Dec 2022, In: Current Opinion in Microbiology. 70, 102199.Research output: Contribution to journal › Review article › peer-review
Open AccessFile2 Downloads (Pure) -
Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides
Krishna, P. S., Woodcock, S. D., Pfeilmeier, S., Bornemann, S., Zipfel, C. & Malone, J. G., 5 Apr 2022, In: Journal of Experimental Botany. 73, 7, p. 2206–2221 16 p.Research output: Contribution to journal › Article › peer-review
Open AccessFile2 Citations (Scopus)6 Downloads (Pure) -
Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa
Woodcock, S. D., Syson, K., Little, R. H., Ward, D., Sifouna, D., Brown, J. K. M., Bornemann, S. & Malone, J. G., 19 Apr 2021, In: PLoS Genetics. 17, 4, e1009524.Research output: Contribution to journal › Article › peer-review
Open AccessFile7 Citations (Scopus)3 Downloads (Pure) -
Understanding plant‐microorganism interactions to envision a future of sustainable agriculture
Bernal, P., Eberl, L., Jonge, R., Lepek, V. C. & Malone, J. G., Apr 2021, In: Environmental Microbiology. 23, 4, p. 1809-1811 3 p.Research output: Contribution to journal › Letter › peer-review
Open AccessFile1 Citation (Scopus)67 Downloads (Pure)