TY - JOUR
T1 - 2-[1-(2,6-Dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridyliron(II) dichlorides
T2 - Synthesis, characterization and ethylene polymerization behavior
AU - Cao, Xiaoping
AU - He, Fan
AU - Zhao, Weizhen
AU - Cai, Zhengguo
AU - Hao, Xiang
AU - Shiono, Takeshi
AU - Redshaw, Carl
AU - Sun, Wen-Hua
PY - 2012/4/17
Y1 - 2012/4/17
N2 - A series of 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands (L1–L5) as well as the ligand 2,6-bis[1-(2,6-dibenzhydryl-4-chloro-phenylimino)ethyl]pyridine (L6) were synthesized and reacted with FeCl2·4H2O to afford the iron(II) dichloride complexes [LFeCl2] (Fe1–Fe6). All new compounds were fully characterized by elemental and spectroscopic analysis, and the molecular structures of the complexes Fe1, Fe2 and Fe4 were determined by single-crystal X-ray diffraction, which revealed a pseudo-square-pyramidal geometry at iron. Upon activation with either MAO or MMAO, all iron pre-catalysts exhibited very high activity in ethylene polymerization with good thermal stability. To the best of our knowledge, the current system showed the highest activity amongst iron bis(imino)pyridine pre-catalysts reported to-date. The polymerization parameters were explored to determine the optimum conditions for catalytic activity, which were typically found to be 2500 eq. Al to Fe at 60 °C in the presence of MMAO, and 80 °C in the presence of MAO. The resultant polyethylene possessed a narrow molecular polydispersity index (PDI) consistent with the formation of single-site active species.
AB - A series of 2-[1-(2,6-dibenzhydryl-4-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine ligands (L1–L5) as well as the ligand 2,6-bis[1-(2,6-dibenzhydryl-4-chloro-phenylimino)ethyl]pyridine (L6) were synthesized and reacted with FeCl2·4H2O to afford the iron(II) dichloride complexes [LFeCl2] (Fe1–Fe6). All new compounds were fully characterized by elemental and spectroscopic analysis, and the molecular structures of the complexes Fe1, Fe2 and Fe4 were determined by single-crystal X-ray diffraction, which revealed a pseudo-square-pyramidal geometry at iron. Upon activation with either MAO or MMAO, all iron pre-catalysts exhibited very high activity in ethylene polymerization with good thermal stability. To the best of our knowledge, the current system showed the highest activity amongst iron bis(imino)pyridine pre-catalysts reported to-date. The polymerization parameters were explored to determine the optimum conditions for catalytic activity, which were typically found to be 2500 eq. Al to Fe at 60 °C in the presence of MMAO, and 80 °C in the presence of MAO. The resultant polyethylene possessed a narrow molecular polydispersity index (PDI) consistent with the formation of single-site active species.
U2 - 10.1016/j.polymer.2012.02.050
DO - 10.1016/j.polymer.2012.02.050
M3 - Article
VL - 53
SP - 1870
EP - 1880
JO - Polymer
JF - Polymer
SN - 0032-3861
IS - 9
ER -