A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer’s disease and behavioral variant frontotemporal dementia

Jingjing Wang, Stephen Redmond, Maxime Bertoux, John Hodges, Michael Hornberger

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
7 Downloads (Pure)

Abstract

The clinical distinction between Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) remains challenging and largely dependent on the experience of the clinician. This study investigates whether objective machine learning algorithms using supportive neuroimaging and neuropsychological clinical features can aid the distinction between both diseases. Retrospective neuroimaging and neuropsychological data of 166 participants (54 AD; 55 bvFTD; 57 healthy controls) was analyzed via a Naïve Bayes classification model. A subgroup of patients (n = 22) had pathologically-confirmed diagnoses. Results show that a combination of gray matter atrophy and neuropsychological features allowed a correct classification of 61.47% of cases at clinical presentation. More importantly, there was a clear dissociation between imaging and neuropsychological features, with the latter having the greater diagnostic accuracy (respectively 51.38 vs. 62.39%). These findings indicate that, at presentation, machine learning classification of bvFTD and AD is mostly based on cognitive and not imaging features. This clearly highlights the urgent need to develop better biomarkers for both diseases, but also emphasizes the value of machine learning in determining the predictive diagnostic features in neurodegeneration.
Original languageEnglish
Article number119
JournalFrontiers in Aging Neuroscience
Volume8
DOIs
Publication statusPublished - 16 Jun 2016

Cite this