A comparison of two dust uplift schemes within the same general circulation model

Duncan Ackerley, Manoj M. Joshi, Eleanor J. Highwood, Claire L. Ryder, Mark A. J. Harrison, David N. Walters, Sean F. Milton, Jane Strachan

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Aeolian dust modelling has improved significantly over the last ten years and many institutions now consistently model dust uplift, transport and deposition in general circulation models (GCMs). However, the representation of dust in GCMs is highly variable between modelling communities due to differences in the uplift schemes employed and the representation of the global circulation that subsequently leads to dust deflation. In this study two different uplift schemes are incorporated in the same GCM. This approach enables a clearer comparison of the dust uplift schemes themselves, without the added complexity of several different transport and deposition models. The global annual mean dust aerosol optical depths (at 550 nm) using two different dust uplift schemes were found to be 0.014 and 0.023—both lying within the estimates from the AeroCom project. However, the models also have appreciably different representations of the dust size distribution adjacent to the West African coast and very different deposition at various sites throughout the globe. The different dust uplift schemes were also capable of influencing the modelled circulation, surface air temperature, and precipitation despite the use of prescribed sea surface temperatures. This has important implications for the use of dust models in AMIP-style (Atmospheric Modelling Intercomparison Project) simulations and Earth-system modelling.
Original languageEnglish
Article number260515
Number of pages13
JournalAdvances in Meteorology
Publication statusPublished - 2012

Cite this