A coupled field study of subsurface fracture flow and colloid transport

Wei Zhang, Xiang-Yu Tang, Noam Weisbrod, P Zhao, Brian Reid

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

Field studies of subsurface transport of colloids, which may act as carriers of contaminants, are still rare. This is particularly true for heterogeneous and fractured matrices. To address this knowledge gap, a 30-m long monitoring trench was constructed at the lower end of sloping farmland in central Sichuan, southwest China. During the summer of 2013, high resolution dynamic and temporal fracture flow discharging from the interface between fractured mudrock and impermeable sandstone was obtained at intervals of 5 min (for fast rising stages), 30–60 min (for slow falling stages) or 15 min (at all other times). This discharge was analyzed to elucidate fracture flow and colloid transport in response to rainfall events. Colloid concentrations were observed to increase quickly once rainfall started (15–90 min) and reached peak values of up to 188 mg/L. Interestingly, maximum colloid concentration occurred prior to the arrival of flow discharge peak (i.e. maximum colloid concentration was observed before saturation of the soil layer). Rainfall intensity (rather than its duration) was noted to be the main factor controlling colloid response and transport. Dissolved organic carbon concentration and d18O dynamics in combination with soil water potential were used to apportion water sources of fracture flow at different stages. These approaches suggested the main source of the colloids discharged to be associated with the flushing of colloids from the soil mesopores and macropores. Beyond the scientific interest of colloid mobilization and transport at the field scale, these results have important implications for a region of about 160,000 km2 in southwest China that featured similar hydrogeologic settings as the experimental site. In this agriculture dominated area, application of pesticides and fertilizers to farmland is prevalent. These results highlight the need to avoid such applications immediately before rainfall events in order to reduce rapid migration to groundwater via fracture flow in either dissolved form or in association with colloids.
Original languageEnglish
Pages (from-to)476-488
JournalJournal of Hydrology
Volume524
DOIs
Publication statusPublished - May 2015

Keywords

  • Colloid transport
  • Fracture flow
  • Colloid response
  • Natural rainfall

Cite this