Abstract
Temporal ordering of events is biased, or influenced, by perceptual organization—figure–ground organization—and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target’s offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (PsycINFO Database Record (c) 2015 APA, all rights reserved)
Original language | English |
---|---|
Pages (from-to) | 1718-1733 |
Number of pages | 16 |
Journal | Journal of Experimental Psychology: Human Perception and Performance |
Volume | 41 |
Issue number | 6 |
DOIs | |
Publication status | Published - Dec 2015 |
Profiles
-
John Spencer
- School of Psychology - Professor in Psychology
- Developmental Science - Member
Person: Research Group Member, Academic, Teaching & Research