A list of organic kryptoracemates

Laszlo Fabian, Carolyn Pratt Brock

Research output: Contribution to journalArticlepeer-review

82 Citations (Scopus)


A list of 181 organic kryptoracemates has been compiled. This class of crystallographic oddities is made up of racemic compounds (i.e. pairs of resolvable enantiomers) that happen to crystallize in Sohnke space groups (i.e. groups that include only proper symmetry operations). Most (151) of the 181 structures could have crystallized as ordered structures in non-Sohnke groups. The remaining 30 structures do not fully meet this criterion but would have been classified as kryptoracemates by previous authors. Examples were found and checked with the aid of available software for searching the Cambridge Structural Database, for generating and comparing InChI strings, and for validating crystal structures. The pairs of enantiomers in the true kryptoracemates usually have very similar conformations; often the match is near-perfect. There is a pseudosymmetric relationship of the enantiomers in about 60% of the kryptoracemate structures, but the deviations from inversion or glide symmetry are usually quite easy to spot. Kryptoracemates were found to account for 0.1% of all organic structures containing either a racemic compound, a meso molecule, or some other achiral molecule. The centroid of a pair of enantiomers is more likely (99.9% versus 99% probability) to be located on an inversion center than is the centroid of a potentially centrosymmetric molecule.
Original languageEnglish
Pages (from-to)94-103
Number of pages10
JournalActa Crystallographica Section B
Issue number1
Publication statusPublished - 2010

Cite this