Abstract
Exploitation of natural photovoltaic reaction center pigment proteins in biohybrid architectures for solar energy harvesting is attractive due to their global abundance, environmental compatibility, and near-unity quantum efficiencies. However, it is challenging to achieve high photocurrents in a device setup due to limitations imposed by low light absorbance by protein monolayers and/or slow long-range diffusion of liquid-phase charge carriers. In an attempt to enhance the photocurrent density achievable by pigment proteins, here, an alternative solid-state device architecture enabled by a mechanoresponsive gel electrolyte that can be applied under nondenaturing conditions is demonstrated. The phase-changing electrolyte gel provides a pervading biocompatible interface for charge conduction through highly absorbing protein multilayers that are fabricated in a simple fashion. Assembled devices exhibit enhanced current stability and a maximal photoresponse of ≈860 µA cm−2, a fivefold improvement over the best previous comparable devices under standard illumination conditions. Photocurrent generation is enhanced by directional energy transfer through extended layers of light-harvesting complexes, mimicking the modular antenna/transducer architecture of natural photosystems, and by metastable radical pair formation when photovoltaic reaction centers are embedded throughout light-harvesting regions of the device.
Original language | English |
---|---|
Article number | 1704073 |
Journal | Advanced Materials |
Volume | 30 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Feb 2018 |
Keywords
- bio-photovoltaics
- mechanoresponsive gels
- photosynthetic reaction centers
- solid-state solar cells