Projects per year
Abstract
Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand howorganisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results showthat a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt.
Original language | English |
---|---|
Pages (from-to) | 2344–2351 |
Number of pages | 8 |
Journal | Genome Biology and Evolution |
Volume | 7 |
Issue number | 8 |
Early online date | 4 Aug 2015 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- individual-based model
- prokaryotic genome
- extinction
- evolvability
- global change
- genome size optimization
Projects
- 1 Finished
-
From the North Sea to the Arctic Ocean; The Impact of Temperature on Eukaryotic Phytoplankton.
Mock, T., Moulton, V., Toseland, A., Toseland, A., Utting, R. & Utting, R.
Natural Environment Research Council
29/07/13 → 28/07/16
Project: Research