A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperatures

Thomas R. Karl, Philip D. Jones, Richard W. Knight, George Kukla, Neil Plummer, Vyacheslav Razuvayev, Kevin P. Gallo, Janette Lindseay, Robert J. Charlson, Thomas C. Peterson

Research output: Contribution to journalArticlepeer-review

Abstract

Monthly mean maximum and minimum temperatures for over 50% (10%) of the Northern (Southern) Hemisphere landmass, accounting for 37% of the global landmass, indicate that the rise of the minimum temperature has occurred at a rate three times that of the maximum temperature during the period 1951–90 (0.84°C versus 0.28°C). The decrease of the diurnal temperature range is approximately equal to the increase of mean temperature. The asymmetry is detectable in all seasons and in most of the regions studied. The decrease in the daily temperature range is partially related to increases in cloud cover. Furthermore, a large number of atmospheric and surface boundary conditions are shown to differentially affect the maximum and minimum temperature. Linkages of the observed changes in the diurnal temperature range to large-scale climate forcings, such as anthropogenic increases in sulfate aerosols, greenhouse gases, or biomass burning (smoke), remain tentative. Nonetheless, the observed decrease of the diurnal temperature range is clearly important, both scientifically and practically.
Original languageEnglish
Pages (from-to)1007-1023
Number of pages17
JournalBulletin of the American Meteorological Society
Volume74
Issue number6
DOIs
Publication statusPublished - 1993

Cite this