A parameterization of Greenland's tip jets suitable for ocean or coupled climate models

David A. J. Sproson, Ian A. Renfrew, Karen J. Heywood

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
7 Downloads (Pure)


Greenland's tip jets are low-level, high wind speed jets forced by an interaction of the synoptic-scale atmospheric flow and the steep, high orography of Greenland. These jets are thought to play an important role in both preconditioning for, and triggering of, open-ocean convection in the Irminger Sea. However, the relatively small spatial scale of the jets prevents their accurate representation in the relatively low resolution (~1 degree) atmospheric (re-)analyses which are typically used to force ocean general circulation models (e.g. ECMWF ERA-40 and NCEP reanalyses, or products based on these). Here we present a method of ‘bogussing’ Greenland's tip jets into such surface wind fields and thus, via bulk flux formulae, into the air-sea turbulent flux fields. In this way the full impact of these mesoscale tip jets can be incorporated in any ocean general circulation model of sufficient resolution. The tip jet parameterization is relatively simple, making use of observed linear gradients in wind speed along and across the jet, but is shown to be accurate to a few m s-1 on average. The inclusion of tip jets results in a large local increase in both the heat and momentum fluxes. When applied to a 1-dimensional mixed-layer model this results in a deepening of the winter mixed-layer of over 300 m. The parameterization scheme only requires 10 meter wind speed and mean sea level pressure as input fields; thus it is also suitable for incorporation into a coupled atmosphere-ocean climate model at the coupling stage.
Original languageEnglish
JournalJournal of Geophysical Research C: Oceans
Issue number8
Publication statusPublished - 2010

Cite this