A redox switch allows binding of ferrous and ferric ions in the cyanobacterial iron binding protein FutA from Prochlorococcus

Rachel Bolton, Moritz M. Machelett, Jack Stubbs, Danny Axford, Nicolas Caramello, Lucrezia Catapano, Martin Malý, Matthew J. Rodrigues, Charlotte Cordery, Graham J. Tizzard, Fraser MacMillan, Sylvain Engilberge, David von Stetten, Takehiko Tosha, Hiroshi Sugimoto, Jonathan A. R. Worrall, Jeremy S. Webb, Mike Zubkov, Simon Coles, Eric MathieuRoberto A. Steiner, Garib Murshudov, Tobias E. Schrader, Allen M. Orville, Antoine Royant, Gwyndaf Evans, Michael A. Hough, Robin L. Owen, Ivo Tews

Research output: Contribution to journalArticlepeer-review

10 Downloads (Pure)

Abstract

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes typically encode two different types of FutA iron binding proteins: periplasmic FutA2 ABC transporter subunits bind ferric (Fe3+), while cytosolic FutA1 binds ferrous (Fe2+). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a solvent molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell was consistent with an overall charge-neutral ferric binding state in structures determined by neutron diffraction and serial femtosecond crystallography.

Conventional rotation X-ray crystallography using a home source revealed X-ray induced photoreduction of the iron center with observation of the ferrous binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral ferrous binding site. Room temperature dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between ferric and ferrous states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.
Original languageEnglish
Article numbere2308478121
JournalProceedings of the National Academy of Sciences of the United States of America
Volume121
Issue number12
Early online date15 Mar 2024
DOIs
Publication statusPublished - 19 Mar 2024

Cite this