Projects per year
Abstract
Diatoms contribute 20% of global primary production and form the basis of many marine food webs. Although their species diversity correlates with broad diversity in cell size, there is also an intraspecific cell-size plasticity due to sexual reproduction and varying environmental conditions. However, despite the ecological significance of the diatom cell size for food-web structure and global biogeochemical cycles, our knowledge about genes underpinning the size of diatom cells remains elusive. Here, a combination of reverse genetics, experimental evolution and comparative RNA8 sequencing analyses enabled us to identify a previously unknown genetic control of cell size in the diatom Thalassiosira pseudonana. In particular, the targeted deregulation of the expression of the cell-wall protein silacidin caused a significant increase in valve diameter. Remarkably, the natural downregulation of the silacidin gene transcript due to experimental evolution under low temperature also correlated with cell-size increase. Our data give first evidence for a genetically controlled regulation of cell size in Thalassiosira pseudonana and possibly other centric diatoms as they also encode the silacidin gene in their genomes.
Original language | English |
---|---|
Pages (from-to) | 2452-2464 |
Number of pages | 13 |
Journal | The ISME Journal |
Volume | 11 |
Issue number | 11 |
Early online date | 21 Jul 2017 |
DOIs | |
Publication status | Published - Nov 2017 |
Profiles
-
Thomas Mock
- School of Environmental Sciences - Professor of Marine Microbiology
- Centre for Ecology, Evolution and Conservation - Member
- Centre for Ocean and Atmospheric Sciences - Member
- Environmental Biology - Member
- ClimateUEA - Member
Person: Member, Research Group Member, Research Centre Member, Academic, Teaching & Research
Projects
- 2 Finished
-
From the North Sea to the Arctic Ocean; The Impact of Temperature on Eukaryotic Phytoplankton.
Mock, T., Moulton, V., Toseland, A., Toseland, A., Utting, R. & Utting, R.
Natural Environment Research Council
29/07/13 → 28/07/16
Project: Research
-
Modelling evolution, ecology and biogeochemistry of marine microbial ecosystems
Williams, H.
1/12/09 → 31/03/13
Project: Research