TY - JOUR
T1 - Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57Bl/6 mice
AU - Duval, Caroline
AU - Thissen, Uwe
AU - Keshtkar, Shohreh
AU - Accart, Bertrand
AU - Stienstra, Rinke
AU - Boekschoten, Mark V.
AU - Roskams, Tania
AU - Kersten, Sander
AU - Müller, Michael
PY - 2010/12/1
Y1 - 2010/12/1
N2 - OBJECTIVE - Nonalcoholic fatty liver disease (NAFLD) is linked to obesity and diabetes, suggesting an important role of adipose tissue in the pathogenesis of NAFLD. Here, we aimed to investigate the interaction between adipose tissue and liver in NAFLD and identify potential early plasma markers that predict nonalcoholic steatohepatitis (NASH). RESEARCH DESIGN AND METHODS - C57Bl/6 mice were chronically fed a high-fat diet to induce NAFLD and compared with mice fed a low-fat diet. Extensive histological and phenotypical analyses coupled with a time course study of plasma proteins using multiplex assay were performed. RESULTS - Mice exhibited pronounced heterogeneity in liver histological scoring, leading to classification into four subgroups: low-fat low (LFL) responders displaying normal liver morphology, low-fat high (LFH) responders showing benign hepatic steatosis, high-fat low (HFL) responders displaying pre-NASH with macrovesicular lipid droplets, and high fat high (HFH) responders exhibiting overt NASH characterized by ballooning of hepatocytes, presence of Mallory bodies, and activated inflammatory cells. Compared with HFL responders, HFH mice gained weight more rapidly and exhibited adipose tissue dysfunction characterized by decreased final fat mass, enhanced macrophage infiltration and inflammation, and adipose tissue remodeling. Plasma haptoglobin, IL-1β, TIMP-1, adiponectin, and leptin were significantly changed in HFH mice. Multivariate analysis indicated that in addition to leptin, plasma CRP, haptoglobin, eotaxin, and MIP-1α early in the intervention were positively associated with liver triglycerides. Intermediate prognostic markers of liver triglycerides included IL-18, IL-1β, MIP-1γ, and MIP-2, whereas insulin, TIMP-1, granulocyte chemotactic protein 2, and myeloperoxidase emerged as late markers. CONCLUSIONS - Our data support the existence of a tight relationship between adipose tissue dysfunction and NASH pathogenesis and point to several novel potential predictive biomarkers for NASH.
AB - OBJECTIVE - Nonalcoholic fatty liver disease (NAFLD) is linked to obesity and diabetes, suggesting an important role of adipose tissue in the pathogenesis of NAFLD. Here, we aimed to investigate the interaction between adipose tissue and liver in NAFLD and identify potential early plasma markers that predict nonalcoholic steatohepatitis (NASH). RESEARCH DESIGN AND METHODS - C57Bl/6 mice were chronically fed a high-fat diet to induce NAFLD and compared with mice fed a low-fat diet. Extensive histological and phenotypical analyses coupled with a time course study of plasma proteins using multiplex assay were performed. RESULTS - Mice exhibited pronounced heterogeneity in liver histological scoring, leading to classification into four subgroups: low-fat low (LFL) responders displaying normal liver morphology, low-fat high (LFH) responders showing benign hepatic steatosis, high-fat low (HFL) responders displaying pre-NASH with macrovesicular lipid droplets, and high fat high (HFH) responders exhibiting overt NASH characterized by ballooning of hepatocytes, presence of Mallory bodies, and activated inflammatory cells. Compared with HFL responders, HFH mice gained weight more rapidly and exhibited adipose tissue dysfunction characterized by decreased final fat mass, enhanced macrophage infiltration and inflammation, and adipose tissue remodeling. Plasma haptoglobin, IL-1β, TIMP-1, adiponectin, and leptin were significantly changed in HFH mice. Multivariate analysis indicated that in addition to leptin, plasma CRP, haptoglobin, eotaxin, and MIP-1α early in the intervention were positively associated with liver triglycerides. Intermediate prognostic markers of liver triglycerides included IL-18, IL-1β, MIP-1γ, and MIP-2, whereas insulin, TIMP-1, granulocyte chemotactic protein 2, and myeloperoxidase emerged as late markers. CONCLUSIONS - Our data support the existence of a tight relationship between adipose tissue dysfunction and NASH pathogenesis and point to several novel potential predictive biomarkers for NASH.
KW - Adipose Tissue
KW - Animals
KW - Body Weight
KW - Diet, Fat-Restricted
KW - Dietary Fats
KW - Fatty Liver
KW - Liver
KW - Mice
KW - Mice, Inbred C57BL
KW - Obesity
KW - Oligonucleotide Array Sequence Analysis
KW - Polymerase Chain Reaction
KW - RNA
KW - Triglycerides
UR - http://www.scopus.com/inward/record.url?scp=78650039966&partnerID=8YFLogxK
U2 - 10.2337/db10-0224
DO - 10.2337/db10-0224
M3 - Article
C2 - 20858684
AN - SCOPUS:78650039966
VL - 59
SP - 3181
EP - 3191
JO - Diabetes
JF - Diabetes
SN - 0012-1797
IS - 12
ER -