Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds

Richard G. Davies, Ulrike M. Irlich, Steven L. Chown, Kevin J. Gaston

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Tests of the energy hypothesis for the large-scale distribution of species richness have largely been concerned with the influence of two alternative forms of environmental energy, temperature and energy from primary productivity, both of which (at least in terrestrial systems) peak within the tropics. Taxa showing extra-tropical diversity peaks present a potential challenge to the generality of species–energy theory. One such group are pelagic seabirds of the order Procellariiformes that show not only an extra-tropical diversity peak but one confined to the Southern Ocean, hence a highly asymmetric one. They are distinct in being exceptionally adapted to take advantage of wind energy, which they may rely on for long-distance ocean foraging for the patchy resources needed to meet their energetic needs. Wind represents a readily available source of kinetic energy, shows a strong latitudinal gradient, and has been largely omitted from species–energy theory. Moreover, maximal benefits of wind are likely to be afforded in areas of greatest available contiguous ocean extent. We compare the relative importance of wind speed, ocean productivity (chlorophyll concentration), air temperature and available ocean extent (distance) in explaining large-scale global distribution of procellariiform species richness across the world's oceans.
Original languageEnglish
Pages (from-to)98-110
Number of pages13
JournalGlobal Ecology and Biogeography
Volume19
Issue number1
DOIs
Publication statusPublished - 2010

Cite this