TY - JOUR
T1 - An abstract concept of optimal implementation
AU - Khasidashvili, Zurab
AU - Glauert, John R. W.
N1 - WRS 2003, 3rd International Workshop on Reduction Strategies in Rewriting and Programming - Final Proceedings
PY - 2003
Y1 - 2003
N2 - In previous works, we introduced Stable Deterministic Residual Structures (SDRSs), Abstract Reduction Systems with an axiomatized residual relation which model orthogonal term and graph rewriting systems, and Deterministic Family Structures (DFSs), which add an axiomatized notion of redex-family to capture known sharing concepts in the ?-calculus and other orthogonal rewrite systems. In this paper, we introduce and study a concept of implementation of DFSs. We show that for any DFS F, its implementation FI is a non-duplicating DFSs with zig-zag as the family relation, where zig-zag is simply the symmetric and transitive closure of the residual relation on redexes with histories. Further, we show that sharing is compositional: the sharing in a DFS F can be decomposed into a weaker sharing F' (such as zig-zag) and a sharing in the implementation F'I of F' stronger than zig-zag. These results require study of the family relation in non-duplicating SDRSs. We show that zig-zag forms a family-relation in every non-duplicating SDRS, and that it is the only separable family relation in such SDRSs.
AB - In previous works, we introduced Stable Deterministic Residual Structures (SDRSs), Abstract Reduction Systems with an axiomatized residual relation which model orthogonal term and graph rewriting systems, and Deterministic Family Structures (DFSs), which add an axiomatized notion of redex-family to capture known sharing concepts in the ?-calculus and other orthogonal rewrite systems. In this paper, we introduce and study a concept of implementation of DFSs. We show that for any DFS F, its implementation FI is a non-duplicating DFSs with zig-zag as the family relation, where zig-zag is simply the symmetric and transitive closure of the residual relation on redexes with histories. Further, we show that sharing is compositional: the sharing in a DFS F can be decomposed into a weaker sharing F' (such as zig-zag) and a sharing in the implementation F'I of F' stronger than zig-zag. These results require study of the family relation in non-duplicating SDRSs. We show that zig-zag forms a family-relation in every non-duplicating SDRS, and that it is the only separable family relation in such SDRSs.
U2 - 10.1016/S1571-0661(05)82618-0
DO - 10.1016/S1571-0661(05)82618-0
M3 - Article
VL - 86
SP - 689
EP - 713
JO - Electronic Notes in Theoretical Computer Science
JF - Electronic Notes in Theoretical Computer Science
SN - 1571-0661
IS - 4
ER -