Abstract
The pre-steady state reaction kinetics of the reduction of molecular oxygen catalyzed by fully reduced cytochrome oxidase from Escherichia coli and Paracoccus denitrificans were studied using the newly developed microsecond freeze-hyperquenching mixing-and-sampling technique. Reaction samples are prepared 60 and 200 μs after direct mixing of dioxygen with enzyme. Analysis of the reaction samples by low temperature UV-Vis spectroscopy indicates that both enzymes are trapped in the P state. EPR spectroscopy revealed the formation of a mixture of two radicals in both enzymes. Based on its apparent g-value and lineshape, one of these radicals is assigned to a weakly magnetically coupled oxo-ferryl tryptophan cation radical. Implications for the catalytic mechanism of cytochrome oxidases are discussed.
Original language | English |
---|---|
Pages (from-to) | 127-130 |
Number of pages | 4 |
Journal | FEBS Letters |
Volume | 575 |
Issue number | 1-3 |
DOIs | |
Publication status | Published - 24 Sep 2004 |