An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST

Qingxiang Li, Wenbin Sun, Xiang Yun, Boyin Huang, Wenjie Dong, Xiaolan L. Wang, Panmao Zhai, Philip Jones

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)
7 Downloads (Pure)


Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively.
Original languageEnglish
Pages (from-to)635-650
Number of pages16
JournalClimate Dynamics
Issue number1-2
Publication statusPublished - 12 Jan 2021

Cite this