Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome trans-sialidase

Peterson de Andrade, Sanaz Ahmadipour, Robert A. Field

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Sialic acid is the natural substrate for sialidases and its chemical modification has been a useful approach to generate potent and selective inhibitors. Aiming at advancing the discovery of selective Trypanosoma cruzi trans-sialidase (TcTS) inhibitors, we have synthesised a small series of anomeric 1,2,3-triazole-linked sialic acid derivatives in good yields and high purity via copper-catalysed azide–alkyne cycloaddition (CuAAC, click chemistry) and evaluated their activity towards TcTS and neuraminidase. Surprisingly, the compounds showed practically no TcTS inhibition, whereas ca. 70% inhibition was observed for neuraminidase in relation to the analogues bearing hydrophobic substituents and ca. 5% for more polar substituents. These results suggest that polarity changes are less tolerated by neuraminidase due to the big difference in impact of hydrophobicity upon inhibition, thus indicating a simple approach to differentiate both enzymes. Moreover, such selectivity might be reasoned based on a possible steric hindrance caused by a bulky hydrophobic loop that sits over the TcTS active site and may prevent the hydrophobic inhibitors from binding. The present study is a step forward in exploiting subtle structural differences in sialidases that need to be addressed in order to achieve selective inhibition.

Original languageEnglish
Pages (from-to)208-216
Number of pages9
JournalBeilstein Journal of Organic Chemistry
Volume18
DOIs
Publication statusPublished - 17 Feb 2022

Keywords

  • 1,2,3-triazole
  • Inhibition
  • Neuraminidase
  • Sialic acid
  • Trans-sialidase

Cite this