Abstract
Sialic acid is the natural substrate for sialidases and its chemical modification has been a useful approach to generate potent and selective inhibitors. Aiming at advancing the discovery of selective Trypanosoma cruzi trans-sialidase (TcTS) inhibitors, we have synthesised a small series of anomeric 1,2,3-triazole-linked sialic acid derivatives in good yields and high purity via copper-catalysed azide–alkyne cycloaddition (CuAAC, click chemistry) and evaluated their activity towards TcTS and neuraminidase. Surprisingly, the compounds showed practically no TcTS inhibition, whereas ca. 70% inhibition was observed for neuraminidase in relation to the analogues bearing hydrophobic substituents and ca. 5% for more polar substituents. These results suggest that polarity changes are less tolerated by neuraminidase due to the big difference in impact of hydrophobicity upon inhibition, thus indicating a simple approach to differentiate both enzymes. Moreover, such selectivity might be reasoned based on a possible steric hindrance caused by a bulky hydrophobic loop that sits over the TcTS active site and may prevent the hydrophobic inhibitors from binding. The present study is a step forward in exploiting subtle structural differences in sialidases that need to be addressed in order to achieve selective inhibition.
Original language | English |
---|---|
Pages (from-to) | 208-216 |
Number of pages | 9 |
Journal | Beilstein Journal of Organic Chemistry |
Volume | 18 |
DOIs | |
Publication status | Published - 17 Feb 2022 |
Keywords
- 1,2,3-triazole
- Inhibition
- Neuraminidase
- Sialic acid
- Trans-sialidase