Arabidopsis translation initiation factor binding protein CBE1 negatively regulates accumulation of the NADPH oxidase respiratory burst oxidase homolog D

Jeoffrey George, Martin Stegmann, Jacqueline Monaghan, Julia Bailey-Serres, Cyril Zipfel

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
6 Downloads (Pure)

Abstract

Cell surface pattern recognition receptors sense invading pathogens by binding microbial or endogenous elicitors to activate plant immunity. These responses are under tight control to avoid excessive or untimely activation of cellular responses, which may otherwise be detrimental to host cells. How this fine-tuning is accomplished is an area of active study. We previously described a suppressor screen that identified Arabidopsis thaliana mutants with regained immune signaling in the immunodeficient genetic background bak1-5, which we named modifier of bak1-5 (mob) mutants. Here, we report that bak1-5 mob7 mutant restores elicitor-induced signaling. Using a combination of map-based cloning and whole-genome resequencing, we identified MOB7 as conserved binding of eIF4E1 (CBE1), a plant-specific protein that interacts with the highly conserved eukaryotic translation initiation factor eIF4E1. Our data demonstrate that CBE1 regulates the accumulation of respiratory burst oxidase homolog D, the NADPH oxidase responsible for elicitor-induced apoplastic reactive oxygen species production. Furthermore, several mRNA decapping and translation initiation factors colocalize with CBE1 and similarly regulate immune signaling. This study thus identifies a novel regulator of immune signaling and provides new insights into reactive oxygen species regulation, potentially through translational control, during plant stress responses.

Original languageEnglish
Article number105018
JournalJournal of Biological Chemistry
Volume299
Issue number8
Early online date7 Jul 2023
DOIs
Publication statusPublished - Aug 2023

Keywords

  • innate immunity
  • NADPH oxidase
  • ROS
  • signaling
  • translation

Cite this