Abstract
Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr−1) over the period 2020–2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ∼ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020–2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.
Original language | English |
---|---|
Pages (from-to) | 339-357 |
Number of pages | 19 |
Journal | Earth System Dynamics |
Volume | 9 |
Issue number | 2 |
DOIs | |
Publication status | Published - 6 Apr 2018 |
Profiles
-
Nem Vaughan
- School of Environmental Sciences - Associate Professor in Climate Change
- Tyndall Centre for Climate Change Research - Member
- Centre for Ocean and Atmospheric Sciences - Member
- ClimateUEA - Member
Person: Member, Research Group Member, Academic, Teaching & Research