TY - JOUR
T1 - Assessment of CMIP6 performance and projected temperature and precipitation changes over South America
AU - Almazroui, Mansour
AU - Ashfaq, Moetasim
AU - Islam, M. Nazrul
AU - Rashid, Irfan Ur
AU - Kamil, Shahzad
AU - Abid, Muhammad Adnan
AU - O’Brien, Enda
AU - Ismail, Muhammad
AU - Reboita, Michelle Simões
AU - Sörensson, Anna A.
AU - Arias, Paola A.
AU - Alves, Lincoln Muniz
AU - Tippett, Michael K.
AU - Saeed, Sajjad
AU - Haarsma, Rein
AU - Doblas-Reyes, Francisco J.
AU - Saeed, Fahad
AU - Kucharski, Fred
AU - Nadeem, Imran
AU - Silva-Vidal, Yamina
AU - Rivera, Juan A.
AU - Ehsan, Muhammad Azhar
AU - Martínez-Castro, Daniel
AU - Muñoz, Ángel G.
AU - Ali, Md. Arfan
AU - Coppola, Erika
AU - Sylla, Mouhamadou Bamba
PY - 2021/6
Y1 - 2021/6
N2 - We evaluate the performance of a large ensemble of Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) over South America for a recent past reference period and examine their projections of twenty-first century precipitation and temperature changes. The future changes are computed for two time slices (2040–2059 and 2080–2099) relative to the reference period (1995–2014) under four Shared Socioeconomic Pathways (SSPs, SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5). The CMIP6 GCMs successfully capture the main climate characteristics across South America. However, they exhibit varying skill in the spatiotemporal distribution of precipitation and temperature at the sub-regional scale, particularly over high latitudes and altitudes. Future precipitation exhibits a decrease over the east of the northern Andes in tropical South America and the southern Andes in Chile and Amazonia, and an increase over southeastern South America and the northern Andes—a result generally consistent with earlier CMIP (3 and 5) projections. However, most of these changes remain within the range of variability of the reference period. In contrast, temperature increases are robust in terms of magnitude even under the SSP1–2.6. Future changes mostly progress monotonically from the weakest to the strongest forcing scenario, and from the mid-century to late-century projection period. There is an increase in the seasonality of the intra-annual precipitation distribution, as the wetter part of the year contributes relatively more to the annual total. Furthermore, an increasingly heavy-tailed precipitation distribution and a rightward shifted temperature distribution provide strong indications of a more intense hydrological cycle as greenhouse gas emissions increase. The relative distance of an individual GCM from the ensemble mean does not substantially vary across different scenarios. We found no clear systematic linkage between model spread about the mean in the reference period and the magnitude of simulated sub-regional climate change in the future period. Overall, these results could be useful for regional climate change impact assessments across South America.
AB - We evaluate the performance of a large ensemble of Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) over South America for a recent past reference period and examine their projections of twenty-first century precipitation and temperature changes. The future changes are computed for two time slices (2040–2059 and 2080–2099) relative to the reference period (1995–2014) under four Shared Socioeconomic Pathways (SSPs, SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5). The CMIP6 GCMs successfully capture the main climate characteristics across South America. However, they exhibit varying skill in the spatiotemporal distribution of precipitation and temperature at the sub-regional scale, particularly over high latitudes and altitudes. Future precipitation exhibits a decrease over the east of the northern Andes in tropical South America and the southern Andes in Chile and Amazonia, and an increase over southeastern South America and the northern Andes—a result generally consistent with earlier CMIP (3 and 5) projections. However, most of these changes remain within the range of variability of the reference period. In contrast, temperature increases are robust in terms of magnitude even under the SSP1–2.6. Future changes mostly progress monotonically from the weakest to the strongest forcing scenario, and from the mid-century to late-century projection period. There is an increase in the seasonality of the intra-annual precipitation distribution, as the wetter part of the year contributes relatively more to the annual total. Furthermore, an increasingly heavy-tailed precipitation distribution and a rightward shifted temperature distribution provide strong indications of a more intense hydrological cycle as greenhouse gas emissions increase. The relative distance of an individual GCM from the ensemble mean does not substantially vary across different scenarios. We found no clear systematic linkage between model spread about the mean in the reference period and the magnitude of simulated sub-regional climate change in the future period. Overall, these results could be useful for regional climate change impact assessments across South America.
KW - CMIP6
KW - Climate change
KW - Global climate models
KW - South America
UR - http://www.scopus.com/inward/record.url?scp=85108110878&partnerID=8YFLogxK
U2 - 10.1007/s41748-021-00233-6
DO - 10.1007/s41748-021-00233-6
M3 - Article
VL - 5
SP - 155
EP - 183
JO - Earth Systems and Environment
JF - Earth Systems and Environment
SN - 2509-9426
IS - 2
ER -