## Abstract

We provide a variant of an axiomatization of elementary geometry based on logical axioms in the spirit of Huzita--Justin axioms for the Origami constructions. We isolate the fragments corresponding to natural classes of Origami constructions such as Pythagorean, Euclidean, and full Origami constructions. The sets of Origami constructible points for each of the classes of constructions provides the minimal model of the corresponding set of logical axioms.

Our axiomatizations are based on Wu's axioms for orthogonal geometry and some modifications of Huzita--Justin axioms. We work out bi-interpretations between these logical theories and theories of fields as described in J.A. Makowsky (2018). Using a theorem of M. Ziegler (1982) which implies that the first order theory of Vieta fields is undecidable, we conclude that the first order theory of our axiomatization of Origami is also undecidable.

Our axiomatizations are based on Wu's axioms for orthogonal geometry and some modifications of Huzita--Justin axioms. We work out bi-interpretations between these logical theories and theories of fields as described in J.A. Makowsky (2018). Using a theorem of M. Ziegler (1982) which implies that the first order theory of Vieta fields is undecidable, we conclude that the first order theory of our axiomatization of Origami is also undecidable.

Original language | English |
---|---|

Title of host publication | Dick de Jongh on Intuitionistic and Provability Logics |

Editors | Nick Bezhanishvili, Rosalie Iemhoff, Fan Yang |

Publisher | Springer Nature |

ISBN (Electronic) | 978-3-031-47921-2 |

ISBN (Print) | 978-3-031-47920-5, 978-3-031-47923-6 |

Publication status | Accepted/In press - 2024 |