Biogas slurry as an alternative to chemical fertilizer: Changes in soil properties and microbial communities of fluvo-aquic soil in the North China Plain

Jiao Tang, Jinzhong Yin, Anthony J. Davy, Feifei Pan, Xu Han, Shaonan Huang, Dafu Wu

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
12 Downloads (Pure)

Abstract

Biogas slurry application offers an alternative to chemical fertilizer in realizing ecologically re-cycling agriculture. However, the responses of soil fertility and microbial communities to long term use of biogas slurry need to be explored in different soil types and regions. We investigated the effects of repeated applications over six years on the soil properties and microbial character-istics of a fluvo-aquic soil in the North China Plain. The experiment, with equivalent nitrogen in-puts, comprised: biogas slurry (BS), chemical fertilizer (CF) or substitution of half the chemical fertilizer with biogas slurry (BSCF); a control treatment had no fertilizer addition. Soil samples, at a depth of 0–20 cm, were collected for their physicochemical properties. Microbial community diversity and composition was investigated using high-throughput sequencing. Biogas slurry ap-plication treatments tended to lower the soil bulk density while increasing the water-holding ca-pacity and the water-stable aggregate mean weight diameter. Organic carbon and available nu-trient concentrations (nitrogen, potassium and phosphorus) were enhanced in all fertilization treatments relative to the control, especially in the BSCF treatment. Significant differences in mi-crobial community composition were detected between the control and all of the fertilization treatments. BSCF resulted in the greatest diversity and most evenly balanced assemblages of both bacteria and fungi at the phylum level. There were clear associations between microbial composi-tion and changes in soil environmental variables caused by the fertilization treatments. Bacterial community composition and alpha diversity were associated particularly with differences in soil total nitrogen, pH, and available potassium, whereas fungal communities were more related to available potassium. Half substitution of the chemical fertilizer by biogas slurry gave the greatest improvement in soil structure and nutrient availability and this was associated with greater microbial diversity and better balanced microbial communities. Our results suggest that partial substitution with biogas slurry is an alternative to complete chemical fertilizer and that it offers clear benefits for the topsoil structure and fertility in fluvo-aquic soils. It also represents a prom-ising approach to a biogas-linked agroecosystem that restores sustainable coordination between cropping and animal husbandry under an intensive production regime.
Original languageEnglish
Article number15099
JournalSustainability
Volume14
Issue number22
DOIs
Publication statusPublished - 15 Nov 2022

Keywords

  • biogas slurry
  • Physiochemical properties
  • microbial community
  • fluvo-aquic soil
  • North China Plain

Cite this