TY - JOUR
T1 - Bioreactor scalability
T2 - Laboratory-scale bioreactor design influences performance, ecology, and community physiology in expanded granular sludge bed bioreactors
AU - Connelly, Stephanie
AU - Shin, Seung G.
AU - Dillon, Robert J.
AU - Ijaz, Umer Z.
AU - Quince, Christopher
AU - Sloan, William T.
AU - Collins, Gavin
N1 - Funding Information:
The authors thank Carole Jude and North British Distillery for providing support throughout the sampling of the full-scale bioreactor, and for making available performance data from full-scale. The study was funded by the Engineering and Physical Sciences Research Council, UK (EP/J00538X/1; EP/K038885/1). GC was supported by a European Research Council Starting Grant (3C-BIOTECH 261330). UI was funded by NERC IRF NE/L011956/1. CQ was funded by an MRC fellowship MR/M50161X/1 as part of the CLoud Infrastructure for Microbial Genomics (CLIMB) consortium MR/L015080/1.
Publisher Copyright:
© 2017 Connelly, Shin, Dillon, Ijaz, Quince, Sloan and Collins.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB-a one-dimensional and a three- dimensional scale-down of a full-scale design-were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance.
AB - Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB-a one-dimensional and a three- dimensional scale-down of a full-scale design-were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale bioreactors was associated with increased richness in the underlying microbial community at species (OTU) level and improved overall performance.
KW - 16S rRNA gene
KW - Anaerobic digestion
KW - EGSB
KW - Full-scale
KW - Illumina MiSeq
KW - Industrial wastewater
KW - Laboratory-scale
KW - Specific methanogenic activity
UR - http://www.scopus.com/inward/record.url?scp=85019730192&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2017.00664
DO - 10.3389/fmicb.2017.00664
M3 - Article
AN - SCOPUS:85019730192
VL - 8
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
SN - 1664-302X
IS - MAY
M1 - 664
ER -