Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-dimensional nonlinear Schrödinger model

Sergey Nazarenko, Miguel Onorato, Davide Proment

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)
17 Downloads (Pure)


We analyze the Bose-Einstein condensation process and the Berezinskii-Kosterlitz-Thouless phase transition within the nonlinear Schrödinger model and their interplay with wave turbulence theory. By using numerical experiments we study how the condensate fraction and the first-order correlation function behave with respect to the mass, the energy, and the size of the system. By relating the free-particle energy to the temperature, we are able to estimate the Berezinskii-Kosterlitz-Thouless transition temperature. Below this transition we observe that for a fixed temperature the superfluid fraction appears to be size independent, leading to a power-law dependence of the condensate fraction with respect to the system size.
Original languageEnglish
Article number013624
Pages (from-to)013624
Number of pages16
JournalPhysical Review A
Issue number1
Early online date25 Jul 2014
Publication statusPublished - 25 Jul 2014


  • physics.flu-dyn
  • cond-mat.quant-gas
  • cond-mat.stat-mech

Cite this