Abstract
We show that bounded forcing axioms (for instance, the Bounded Proper Forcing Axiom and the Bounded Semiproper Forcing Axiom) are consistent with the existence of (?,?)-gaps and thus do not imply the Open Coloring Axiom. They are also consistent with Jensen's combinatorial principles for L at the level ?, and therefore with the existence of an ?-Suslin tree. We also show that the axiom we call BMM implies ?=?, as well as a stationary reflection principle which has many of the consequences of Martin's Maximum for objects of size ?. Finally, we give an example of a so-called boldface bounded forcing axiom implying 2=?.
Original language | English |
---|---|
Pages (from-to) | 179-203 |
Number of pages | 25 |
Journal | Annals of Pure and Applied Logic |
Volume | 109 |
Issue number | 3 |
DOIs | |
Publication status | Published - 30 May 2001 |
Keywords
- Bounded forcing axioms
- Gaps
- Open coloring axiom
- The continuum
- Boldface bounded forcing axioms