Carbon-sulfur bond formation by reductive elimination of gold(III) thiolates

Lucy Currie, Luca Rocchigiani, David L. Hughes, Manfred Bochmann

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
18 Downloads (Pure)

Abstract

Whereas the reaction of the gold(III) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, d[1a]/dt = k[1a][AdSH] and requires at least two molar equivalents of RSH per Au. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.
Original languageEnglish
Pages (from-to)6333-6343
Number of pages11
JournalDalton Transactions
Volume47
Issue number18
Early online date3 Apr 2018
DOIs
Publication statusPublished - 14 May 2018

Cite this