Projects per year
Abstract
The tetrathionate/thiosulfate interconversion is a two-electron process: S4O62- + 2 e- ↔ 2 S2O32-. Both transformations can support bacterial growth since S2O32- provides an energy source while S4O62- serves as respiratory electron acceptor. Interest in the corresponding S2O32- oxidation also arises from its widespread use in volumetric analysis of oxidizing agents and bleach neutralization during water-treatment. Here we report protein film electrochemistry that defines the reduction potential of the S4O62-/S2O32- couple. The relevant interconversion is not reversible at inert electrodes. However, facile reduction of S4O62- to S2O32- and the reverse reaction are catalyzed by enzymes of the thiosulfate dehydrogenase, TsdA, family adsorbed on graphite electrodes. Zero-current potentials measured with different enzymes, at three pH values, and multiple S4O62- and S2O32- concentrations together with the relevant Nernst equation resolved the tetrathionate/thiosulfate reduction potential as +198 ± 4 mV versus SHE. This potential lies in the approximately 250 mV window encompassing previously reported values calculated from parameters including the free energy of formation. However, the value is considerably more positive than widely used in discussions of bacterial bioenergetics. As a consequence anaerobic respiration by tetrathionate reduction is likely to be more prevalent than presently thought in tetrathionate-containing environments such as marine sediments and the human gut.
Original language | English |
---|---|
Pages (from-to) | 13232–13235 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 137 |
Issue number | 4 |
Early online date | 5 Oct 2015 |
DOIs | |
Publication status | Published - 21 Oct 2015 |
Profiles
-
Julea Butt
- School of Biological Sciences - Professor of Biophysical Chemistry
- Centre for Molecular and Structural Biochemistry - Member
- Centre for Photonics and Quantum Science - Member
- Chemistry of Life Processes - Member
- Chemistry of Light and Energy - Member
- Energy Materials Laboratory - Member
- Molecular Microbiology - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
Projects
- 2 Finished
-
Advancing Biotechnologies for Fuel Generation: Exploiting Transmembrane Cytochromes for Solar Energy Conversion
Butt, J., Clarke, T., Richardson, D. & Lyall, V.
Biotechnology and Biological Sciences Research Council
30/06/13 → 29/06/16
Project: Research