Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension

Gi Fay Mok, Leighton Folkes, Shannon A. Weldon, Eirini Maniou, Victor Martinez-Heredia, Alice M. Godden, Ruth M. Williams, Tatjana Sauka-Spengler, Grant N. Wheeler, Simon Moxon, Andrea E. Münsterberg

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
34 Downloads (Pure)

Abstract

Somites arising from paraxial mesoderm are a hallmark of the segmented vertebrate body plan. They form sequentially during axis extension and generate musculoskeletal cell lineages. How paraxial mesoderm becomes regionalised along the axis and how this correlates with dynamic changes of chromatin accessibility and the transcriptome remains unknown. Here, we report a spatiotemporal series of ATAC-seq and RNA-seq along the chick embryonic axis. Footprint analysis shows differential coverage of binding sites for several key transcription factors, including CDX2, LEF1 and members of HOX clusters. Associating accessible chromatin with nearby expressed genes identifies cis-regulatory elements (CRE) for TCF15 and MEOX1. We determine their spatiotemporal activity and evolutionary conservation in Xenopus and human. Epigenome silencing of endogenous CREs disrupts TCF15 and MEOX1 gene expression and recapitulates phenotypic abnormalities of anterior–posterior axis extension. Our integrated approach allows dissection of paraxial mesoderm regulatory circuits in vivo and has implications for investigating gene regulatory networks.
Original languageEnglish
Article number1157
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - 19 Feb 2021

Cite this