Abstract
We examined changes to subcellular architecture during the compatible interaction between the biotroph pathogen Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection. In particular, the tonoplast appeared close to the extrahaustorial membrane surrounding the haustorium. We investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. This subcellular localization screening led to the identification of an extrahaustorial membrane-localized effector, HaRxL17 that when stably expressed in Arabidopsis increased plant susceptibility to Hpa during compatible and incompatible interactions. Here, we report that the N-terminal part of HaRxL17 is sufficient to target the plant cell membranes. We showed that both C- or N-terminal fluorescent-tagged HaRxL17 localizes around Hpa haustoria, in early and in late stages of infection. As with Hpa infection, GFP-HaRxL17 also localizes around haustoria during infection with Albugo laibachii. Thus, HaRxL17 that increases plant susceptibility to Hpa during both compatible and incompatible interactions, localizes around oomycete haustoria when stably expressed in Arabidopsis.
Original language | English |
---|---|
Pages (from-to) | 145-149 |
Number of pages | 5 |
Journal | Plant Signaling & Behavior |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2012 |
Keywords
- oomycete
- effector
- RxLR
- haustoria
- nucleus
- membrane