TY - JOUR
T1 - Circulating chromosome conformation signatures significantly enhance PSA positive predicting value and overall accuracy for prostate cancer detection
AU - Pchejetski, Dmitri
AU - Hunter, Ewan
AU - Dezfouli, Mehrnoush
AU - Salter, Matthew
AU - Powell, Ryan
AU - Green, Jayne
AU - Naithani, Tarun
AU - Koutsothanasi, Christina
AU - Alshaker, Heba
AU - Jaipuria, Jiten
AU - Connor, Martin J.
AU - Eldred-Evans, David
AU - Fiorentino, Francesca
AU - Ahmed, Hashim
AU - Akoulitchev, Alexandre
AU - Winkler, Mathias
N1 - Funding Information: This work was funded by Oxford BioDynamics.
PY - 2023/1/29
Y1 - 2023/1/29
N2 - Background: Prostate cancer (PCa) has a high lifetime prevalence (one out of six men), but currently there is no widely accepted screening programme. Widely used prostate specific antigen (PSA) test at cut-off of 3.0 ng/mL does not have sufficient accuracy for detection of any prostate cancer, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance in some men with PCa. We have recently identified circulating chromosome conformation signatures (CCSs, Episwitch® PCa test) allowing PCa detection and risk stratification in line with standards of clinical PCa staging. The purpose of this study was to determine whether combining the Episwitch PCa test with the PSA test will increase its diagnostic accuracy. Methods: n = 109 whole blood samples of men enrolled in the PROSTAGRAM screening pilot study and n = 38 samples of patients with established PCa diagnosis and cancer-negative controls from Imperial College NHS Trust were used. Samples were tested for PSA, and the presence of CCSs in the loci encoding for of DAPK1, HSD3B2, SRD5A3, MMP1, and miRNA98 associated with high-risk PCa identified in our previous work. Results: PSA > 3 ng/mL alone showed a low positive predicted value (PPV) of 0.14 and a high negative predicted value (NPV) of 0.93. EpiSwitch alone showed a PPV of 0.91 and a NPV of 0.32. Combining PSA and Episwitch tests has significantly increased the PPV to 0.81 although reducing the NPV to 0.78. Furthermore, integrating PSA, as a continuous variable (rather than a dichotomised 3 ng/mL cut-off), with EpiSwitch in a new multivariant stratification model, Prostate Screening EpiSwitch (PSE) test, has yielded a remarkable combined PPV of 0.93 and NPV of 0.95 when tested on the independent combined cohort. Conclusions: Our results demonstrate that combining the standard PSA readout with circulating chromosome conformations (PSE test) allows for significantly enhanced PSA PPV and overall accuracy for PCa detection. The PSE test is accurate, rapid, minimally invasive, and inexpensive, suggesting significant screening diagnostic potential to minimise unnecessary referrals for expensive and invasive MRI and/or biopsy testing. Further extended prospective blinded validation of the new combined signature in a screening cohort with low cancer prevalence would be the recommended step for PSE adoption in PCa screening.
AB - Background: Prostate cancer (PCa) has a high lifetime prevalence (one out of six men), but currently there is no widely accepted screening programme. Widely used prostate specific antigen (PSA) test at cut-off of 3.0 ng/mL does not have sufficient accuracy for detection of any prostate cancer, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance in some men with PCa. We have recently identified circulating chromosome conformation signatures (CCSs, Episwitch® PCa test) allowing PCa detection and risk stratification in line with standards of clinical PCa staging. The purpose of this study was to determine whether combining the Episwitch PCa test with the PSA test will increase its diagnostic accuracy. Methods: n = 109 whole blood samples of men enrolled in the PROSTAGRAM screening pilot study and n = 38 samples of patients with established PCa diagnosis and cancer-negative controls from Imperial College NHS Trust were used. Samples were tested for PSA, and the presence of CCSs in the loci encoding for of DAPK1, HSD3B2, SRD5A3, MMP1, and miRNA98 associated with high-risk PCa identified in our previous work. Results: PSA > 3 ng/mL alone showed a low positive predicted value (PPV) of 0.14 and a high negative predicted value (NPV) of 0.93. EpiSwitch alone showed a PPV of 0.91 and a NPV of 0.32. Combining PSA and Episwitch tests has significantly increased the PPV to 0.81 although reducing the NPV to 0.78. Furthermore, integrating PSA, as a continuous variable (rather than a dichotomised 3 ng/mL cut-off), with EpiSwitch in a new multivariant stratification model, Prostate Screening EpiSwitch (PSE) test, has yielded a remarkable combined PPV of 0.93 and NPV of 0.95 when tested on the independent combined cohort. Conclusions: Our results demonstrate that combining the standard PSA readout with circulating chromosome conformations (PSE test) allows for significantly enhanced PSA PPV and overall accuracy for PCa detection. The PSE test is accurate, rapid, minimally invasive, and inexpensive, suggesting significant screening diagnostic potential to minimise unnecessary referrals for expensive and invasive MRI and/or biopsy testing. Further extended prospective blinded validation of the new combined signature in a screening cohort with low cancer prevalence would be the recommended step for PSE adoption in PCa screening.
KW - blood test
KW - diagnosis
KW - epigenetics
KW - nucleome
KW - prostate cancer
KW - PSA
KW - screening
UR - http://www.scopus.com/inward/record.url?scp=85147825061&partnerID=8YFLogxK
U2 - 10.3390/cancers15030821
DO - 10.3390/cancers15030821
M3 - Article
AN - SCOPUS:85147825061
VL - 15
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 3
M1 - 821
ER -