TY - JOUR
T1 - Classification of polyhedral shapes from individual anisotropically resolved cryo-electron tomography reconstructions
AU - Bag, Sukantadev
AU - Prentice, Michael B.
AU - Liang, Mingzhi
AU - Warren, Martin J.
AU - Roy Choudhury, Kingshuk
N1 - Funding Information:
This work was funded by Science Foundation Ireland (SFI) Short Term Travel Fellowship 06/RFP/GEN053 STTF 08 to MBP. MBP and ML are supported by Health Research Board HRA_POR/2011/111. SB and KRC were partially supported by a Science Foundation Ireland Research Frontiers Program grant (07/REF/MA7F543) and the SFI Math Initiative. We thank Dr Alasdair W McDowall and Professor. Grant Jensen (jensenlab.caltech.edu) for assistance with obtaining cryoET data. We thank the NIH funded Duke CTSA UL1TR001117 for covering the costs of publication.
Publisher Copyright:
© 2016 Bag et al.
PY - 2016/6/13
Y1 - 2016/6/13
N2 - Background: Cryo-electron tomography (cryo-ET) enables 3D imaging of macromolecular structures. Reconstructed cryo-ET images have a "missing wedge" of data loss due to limitations in rotation of the mounting stage. Most current approaches for structure determination improve cryo-ET resolution either by some form of sub-tomogram averaging or template matching, respectively precluding detection of shapes that vary across objects or are a priori unknown. Various macromolecular structures possess polyhedral structure. We propose a classification method for polyhedral shapes from incomplete individual cryo-ET reconstructions, based on topological features of an extracted polyhedral graph (PG). Results: We outline a pipeline for extracting PG from 3-D cryo-ET reconstructions. For classification, we construct a reference library of regular polyhedra. Using geometric simulation, we construct a non-parametric estimate of the distribution of possible incomplete PGs. In studies with simulated data, a Bayes classifier constructed using these distributions has an average test set misclassification error of < 5 % with upto 30 % of the object missing, suggesting accurate polyhedral shape classification is possible from individual incomplete cryo-ET reconstructions. We also demonstrate how the method can be made robust to mis-specification of the PG using an SVM based classifier. The methodology is applied to cryo-ET reconstructions of 30 micro-compartments isolated from E. coli bacteria. Conclusions: The predicted shapes aren't unique, but all belong to the non-symmetric Johnson solid family, illustrating the potential of this approach to study variation in polyhedral macromolecular structures.
AB - Background: Cryo-electron tomography (cryo-ET) enables 3D imaging of macromolecular structures. Reconstructed cryo-ET images have a "missing wedge" of data loss due to limitations in rotation of the mounting stage. Most current approaches for structure determination improve cryo-ET resolution either by some form of sub-tomogram averaging or template matching, respectively precluding detection of shapes that vary across objects or are a priori unknown. Various macromolecular structures possess polyhedral structure. We propose a classification method for polyhedral shapes from incomplete individual cryo-ET reconstructions, based on topological features of an extracted polyhedral graph (PG). Results: We outline a pipeline for extracting PG from 3-D cryo-ET reconstructions. For classification, we construct a reference library of regular polyhedra. Using geometric simulation, we construct a non-parametric estimate of the distribution of possible incomplete PGs. In studies with simulated data, a Bayes classifier constructed using these distributions has an average test set misclassification error of < 5 % with upto 30 % of the object missing, suggesting accurate polyhedral shape classification is possible from individual incomplete cryo-ET reconstructions. We also demonstrate how the method can be made robust to mis-specification of the PG using an SVM based classifier. The methodology is applied to cryo-ET reconstructions of 30 micro-compartments isolated from E. coli bacteria. Conclusions: The predicted shapes aren't unique, but all belong to the non-symmetric Johnson solid family, illustrating the potential of this approach to study variation in polyhedral macromolecular structures.
KW - Bacterial microcompartment
KW - Classification from incomplete data
KW - Cryo electron tomography
KW - Incomplete polyhedra
KW - Polyhedron graph
UR - http://www.scopus.com/inward/record.url?scp=84973579215&partnerID=8YFLogxK
U2 - 10.1186/s12859-016-1107-5
DO - 10.1186/s12859-016-1107-5
M3 - Article
C2 - 27296169
AN - SCOPUS:84973579215
VL - 17
JO - BMC Bioinformatics
JF - BMC Bioinformatics
SN - 1471-2105
IS - 1
M1 - 234
ER -