Coexistence of Ballistic and Fourier Regimes in the β Fermi-Pasta-Ulam-Tsingou Lattice

Giovanni Dematteis, Lamberto Rondoni, Davide Proment, Francesco De Vita, Miguel Onorato

Research output: Contribution to journalArticle

4 Citations (Scopus)
7 Downloads (Pure)

Abstract

Commonly, thermal transport properties of one-dimensional systems are found to be anomalous. Here, we perform a numerical and theoretical study of the β-Fermi-Pasta-Ulam-Tsingou chain, considered a prototypical model for one-dimensional anharmonic crystals, in contact with thermostats at different temperatures. We give evidence that, in steady state conditions, the local wave energy spectrum can be naturally split into modes that are essentially ballistic (noninteracting or scarcely interacting) and kinetic modes (interacting enough to relax to local thermodynamic equilibrium). We show numerically that the well-known divergence of the energy conductivity is related to how the transition region between these two sets of modes shifts in k space with the system size L, due to properties of the collision integral of the system. Moreover, we show that the kinetic modes are responsible for a macroscopic behavior compatible with Fourier's law. Our work sheds light on the long-standing problem of the applicability of standard thermodynamics in one-dimensional nonlinear chains, testbed for understanding the thermal properties of nanotubes and nanowires.

Original languageEnglish
Article number024101
JournalPhysical Review Letters
Volume125
Issue number2
DOIs
Publication statusPublished - 7 Jul 2020

Cite this