Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search

S. Chen, R. N. Caballero, Y. J. Guo, A. Chalumeau, K. Liu, G. Shaifullah, K. J. Lee, S. Babak, G. Desvignes, A. Parthasarathy, H. Hu, E. van der Wateren, J. Antoniadis, A. S. Bak Nielsen, C. G. Bassa, A. Berthereau, M. Burgay, D. J. Champion, I. Cognard, M. FalxaR. D. Ferdman, P. C. C. Freire, J. R. Gair, E. Graikou, L. Guillemot, J. Jang, G. H. Janssen, R. Karuppusamy, M. J. Keith, M. Kramer, X. J. Liu, A. G. Lyne, R. A. Main, J. W. Mckee, M. B. Mickaliger, B. B. P. Perera, D. Perrodin, A. Petiteau, N. K. Porayko, A. Possenti, A. Samajdar, S. A. Sanidas, A. Sesana, L. Speri, B. W. Stappers, G. Theureau, C. Tiburzi, A. Vecchio, J. P. W. Verbiest, J. Wang, L. Wang, H. Xu

    Research output: Contribution to journalArticlepeer-review

    208 Citations (Scopus)
    3 Downloads (Pure)

    Abstract

    We present results from the search for a stochastic gravitational-wave background (GWB) as predicted by the theory of General Relativity using six radio millisecond pulsars from the Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA) covering a timespan up to 24 yr. A GWB manifests itself as a long-term low-frequency stochastic signal common to all pulsars, a common red signal (CRS), with the characteristic Hellings-Downs (HD) spatial correlation. Our analysis is performed with two independent pipelines, ENTERPRISE, and TEMPONEST+FORTYTWO, which produce consistent results. A search for a CRS with simultaneous estimation of its spatial correlations yields spectral properties compatible with theoretical GWB predictions, but does not result in the required measurement of the HD correlation, as required for GWB detection. Further Bayesian model comparison between different types of CRSs, including a GWB, finds the most favoured model to be the common uncorrelated red noise described by a power law with A = 5.13-2.73 +4.20 × 10-15 and γ = 3.78-0.59 +0.69 (95 per cent credible regions). Fixing the spectral index to γ= 13/3 as expected from the GWB by circular, inspiralling supermassive black hole binaries results in an amplitude of A =2.95-0.72 +0.89 × 10-15. We implement three different models, BAYESEPHEM, LINIMOSS, and EPHEMGP, to address possible Solar system ephemeris (SSE) systematics and conclude that our results may only marginally depend on these effects. This work builds on the methods and models from the studies on the EPTA DR1. We show that under the same analysis framework the results remain consistent after the data set extension.

    Original languageEnglish
    Pages (from-to)4970-4993
    Number of pages24
    JournalMonthly Notices of the Royal Astronomical Society
    Volume508
    Issue number4
    Early online date27 Oct 2021
    DOIs
    Publication statusPublished - Dec 2021

    Keywords

    • gravitational waves
    • methods: data analysis
    • pulsars: general
    • Astrophysics - High Energy Astrophysical Phenomena
    • Astrophysics - Cosmology and Nongalactic Astrophysics

    Cite this