TY - JOUR
T1 - Comparative study of healthy older and younger adults shows they have the same skin concentration of vitamin D3 precursor, 7-dehydrocholesterol, and similar response to UVR
AU - Borecka, Oktawia
AU - Dutton, John J.
AU - Tang, Jonathan C. Y.
AU - Fraser, William D.
AU - Webb, Ann R.
AU - Rhodes, Lesley E.
N1 - Data Availability Statement: Data required to assess the manuscript’s conclusions are provided within the manuscript. Further data relevant to this research can be found on the ISRCTN trial registry website (ISRCTN no. 72674753).
Funding information: The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Programme (DTP) (student number 7617061) and supported by the NIHR Manchester Biomedical Research Centre (NIHR203308). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.
PY - 2024/4/12
Y1 - 2024/4/12
N2 - Vitamin D3 synthesis in human skin is initiated by solar ultraviolet radiation (UVR) exposure of precursor 7-dehydrocholesterol (7DHC), but influence of age on the early stage of vitamin D3 metabolism is uncertain. We performed a prospective standardised study in healthy ambulant adults aged ≥65 and ≤40 years examining (1) if baseline skin 7DHC concentration differs between younger and older adults and (2) the impact of older age on serum vitamin D3 response to solar simulated UVR. Eleven younger (18–40 years) and 10 older (65–89 years) adults, phototype I–III, received low-dose UVR (95% UVA, 5% UVB, 1.3 SED) to ~35% of the body surface area. Biopsies were taken for 7DHC assay from unexposed skin, skin immediately and 24 h post-UVR, and blood sampled at baseline, 24 h and 7 d post-UVR for vitamin D3 assay. Samples were analysed by HPLC-MS/MS. Baseline skin 7DHC (mean ± SD) was 0.22 ± 0.07 and 0.25 ± 0.08 µg/mg in younger versus older adults (no significant difference). Baseline serum vitamin D3 concentration was 1.5 ± 1.5 and 1.5 ± 1.7 nmol/L in younger versus older adults, respectively, and showed a significant increase in both groups post-UVR (no significant differences between age groups). Thus, skin 7DHC concentration was not a limiting factor for vitamin D3 production in older relative to younger adults. This information assists public health guidance on sun exposure/vitamin D nutrition, with particular relevance to the growing populations of healthy ambulant adults ≥65 years.
AB - Vitamin D3 synthesis in human skin is initiated by solar ultraviolet radiation (UVR) exposure of precursor 7-dehydrocholesterol (7DHC), but influence of age on the early stage of vitamin D3 metabolism is uncertain. We performed a prospective standardised study in healthy ambulant adults aged ≥65 and ≤40 years examining (1) if baseline skin 7DHC concentration differs between younger and older adults and (2) the impact of older age on serum vitamin D3 response to solar simulated UVR. Eleven younger (18–40 years) and 10 older (65–89 years) adults, phototype I–III, received low-dose UVR (95% UVA, 5% UVB, 1.3 SED) to ~35% of the body surface area. Biopsies were taken for 7DHC assay from unexposed skin, skin immediately and 24 h post-UVR, and blood sampled at baseline, 24 h and 7 d post-UVR for vitamin D3 assay. Samples were analysed by HPLC-MS/MS. Baseline skin 7DHC (mean ± SD) was 0.22 ± 0.07 and 0.25 ± 0.08 µg/mg in younger versus older adults (no significant difference). Baseline serum vitamin D3 concentration was 1.5 ± 1.5 and 1.5 ± 1.7 nmol/L in younger versus older adults, respectively, and showed a significant increase in both groups post-UVR (no significant differences between age groups). Thus, skin 7DHC concentration was not a limiting factor for vitamin D3 production in older relative to younger adults. This information assists public health guidance on sun exposure/vitamin D nutrition, with particular relevance to the growing populations of healthy ambulant adults ≥65 years.
U2 - 10.3390/nu16081147
DO - 10.3390/nu16081147
M3 - Article
VL - 16
JO - Nutrients
JF - Nutrients
SN - 2072-6643
IS - 8
M1 - 1147
ER -