Consistent and inconsistent generalizations of Martin's Axiom, weak square, and weak Chang's Conjecture

David Asperó, Nutt Tananimit

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that the forcing axiom $\MA^{1.5}_{\aleph_2}(\mbox{stratified})$ implies $\Box_{\omega_1, \omega_1}$.
Using this implication, we show that the forcing axiom $\MM_{\aleph_2}(\aleph_2\mbox{-c.c.})$ is inconsistent. We also derive weak Chang's Conjecture from $\MA^{1.5}_{\aleph_2}(\mbox{stratified})$ and use this second implication to give another proof of the inconsistency of $\MM_{\aleph_2}(\aleph_2\mbox{-c.c.})$.
Original languageEnglish
Article number2450021
Number of pages31
JournalJournal of Mathematical Logic (jml)
Early online dateJul 2024
DOIs
Publication statusE-pub ahead of print - Jul 2024

Keywords

  • Weak square
  • forcing axiom failures
  • generalizations of Martin’s Axiom
  • weak Chang’s Conjecture
  • ℵ1.5-c.c. with respect to families of models with additional properties

Cite this