Cortical processing of visceral and somatic stimulation: Differentiating pain intensity from unpleasantness

P. Dunckley, R. G. Wise, Q. Aziz, D. Painter, J. Brooks, I. Tracey, L. Chang

Research output: Contribution to journalArticlepeer-review

118 Citations (Scopus)

Abstract

Visceral and somatic pain perception differs in several aspects: poor localization of visceral pain and the ability of visceral pain to be referred to somatic structures. The perception of pain intensity and affect in visceral and somatic pain syndromes is often different, with visceral pain reported as more unpleasant. To determine whether these behavioral differences are due to differences in the central processing of visceral and somatic pain, non-invasive imaging tools are required to examine the neural correlates of visceral and somatic events when the behavior has been isolated and matched for either unpleasantness or pain intensity. In this study we matched the unpleasantness of somatic and visceral sensations and imaged the neural representation of this perception using functional magnetic resonance imaging in 10 healthy right-handed subjects. Each subject received noxious thermal stimuli to the left foot and midline lower back and balloon distension of the rectum while being scanned. Stimuli were matched to the same unpleasantness rating, producing mild-moderate pain intensity for somatic stimuli but an intensity below the pain threshold for the visceral stimuli. Visceral stimuli induced deactivation of the perigenual cingulate bilaterally with a relatively greater activation of the right anterior insula - i.e. regions encoding affect. Somatic pain induced left dorso-lateral pre-frontal cortex and bilateral inferior parietal cortex activation i.e. regions encoding spatial orientation and assessing perceptual valence of the stimulus. We believe that the observed patterns of activation represent the differences in cortical process of interoceptive (visceral) and exteroceptive (somatic) stimuli when matched for unpleasantness.

Original languageEnglish
Pages (from-to)533-542
Number of pages10
JournalNeuroscience
Volume133
Issue number2
DOIs
Publication statusPublished - 2005

Keywords

  • FMRI
  • Pain
  • Rectum
  • Somatic
  • Visceral

Cite this