Abstract
OBJECTIVE: The Diabetes Care Protocol (DCP), a multifaceted computerized decision support diabetes management intervention, reduces cardiovascular risk of type 2 diabetic patients. We performed a cost-effectiveness analysis of DCP from a Dutch health care perspective.
RESEARCH DESIGN AND METHODS: A cluster randomized trial provided data of DCP versus usual care. The 1-year follow-up patient data were extrapolated using a modified Dutch microsimulation diabetes model, computing individual lifetime health-related costs, and health effects. Incremental costs and effectiveness (quality-adjusted life-years [QALYs]) were estimated using multivariate generalized estimating equations to correct for practice-level clustering and confounding. Incremental cost-effectiveness ratios (ICERs) were calculated and cost-effectiveness acceptability curves were created. Stroke costs were calculated separately. Subgroup analyses examined patients with and without cardiovascular disease (CVD+ or CVD− patients, respectively).
RESULTS: Excluding stroke, DCP patients lived longer (0.14 life-years, P = NS), experienced more QALYs (0.037, P = NS), and incurred higher total costs (€1,415, P = NS), resulting in an ICER of €38,243 per QALY gained. The likelihood of cost-effectiveness given a willingness-to-pay threshold of €20,000 per QALY gained is 30%. DCP had a more favorable effect on CVD+ patients (ICER = €14,814) than for CVD− patients (ICER = €121,285). Coronary heart disease costs were reduced (€−587, P < 0.05).
CONCLUSIONS: DCP reduces cardiovascular risk, resulting in only a slight improvement in QALYs, lower CVD costs, but higher total costs, with a high cost-effectiveness ratio. Cost-effective care can be achieved by focusing on cardiovascular risk factors in type 2 diabetic patients with a history of CVD.
RESEARCH DESIGN AND METHODS: A cluster randomized trial provided data of DCP versus usual care. The 1-year follow-up patient data were extrapolated using a modified Dutch microsimulation diabetes model, computing individual lifetime health-related costs, and health effects. Incremental costs and effectiveness (quality-adjusted life-years [QALYs]) were estimated using multivariate generalized estimating equations to correct for practice-level clustering and confounding. Incremental cost-effectiveness ratios (ICERs) were calculated and cost-effectiveness acceptability curves were created. Stroke costs were calculated separately. Subgroup analyses examined patients with and without cardiovascular disease (CVD+ or CVD− patients, respectively).
RESULTS: Excluding stroke, DCP patients lived longer (0.14 life-years, P = NS), experienced more QALYs (0.037, P = NS), and incurred higher total costs (€1,415, P = NS), resulting in an ICER of €38,243 per QALY gained. The likelihood of cost-effectiveness given a willingness-to-pay threshold of €20,000 per QALY gained is 30%. DCP had a more favorable effect on CVD+ patients (ICER = €14,814) than for CVD− patients (ICER = €121,285). Coronary heart disease costs were reduced (€−587, P < 0.05).
CONCLUSIONS: DCP reduces cardiovascular risk, resulting in only a slight improvement in QALYs, lower CVD costs, but higher total costs, with a high cost-effectiveness ratio. Cost-effective care can be achieved by focusing on cardiovascular risk factors in type 2 diabetic patients with a history of CVD.
Original language | English |
---|---|
Pages (from-to) | 258-263 |
Number of pages | 6 |
Journal | Diabetes Care |
Volume | 33 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2010 |