Creation of Golden Gate constructs for gene doctoring

Nicholas M. Thomson, Chuanzhen Zhang, Eleftheria Trampari, Mark J. Pallen

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
10 Downloads (Pure)


Background: Gene doctoring is an efficient recombination-based genetic engineering approach to mutagenesis of the bacterial chromosome that combines the λ-Red recombination system with a suicide donor plasmid that is cleaved in vivo to generate linear DNA fragments suitable for recombination. The use of a suicide donor plasmid makes Gene Doctoring more efficient than other recombineering technologies. However, generation of donor plasmids typically requires multiple cloning and screening steps. Results: We constructed a simplified acceptor plasmid, called pDOC-GG, for the assembly of multiple DNA fragments precisely and simultaneously to form a donor plasmid using Golden Gate assembly. Successful constructs can easily be identified through blue-white screening. We demonstrated proof of principle by inserting a gene for green fluorescent protein into the chromosome of Escherichia coli. We also provided related genetic parts to assist in the construction of mutagenesis cassettes with a tetracycline-selectable marker. Conclusions: Our plasmid greatly simplifies the construction of Gene Doctoring donor plasmids and allows for the assembly of complex, multi-part insertion or deletion cassettes with a free choice of target sites and selection markers. The tools we developed are applicable to gene editing for a wide variety of purposes in Enterobacteriaceae and potentially in other diverse bacterial families.

Original languageEnglish
Article number54
JournalBMC Biotechnology
Issue number1
Publication statusPublished - 7 Oct 2020


  • Chromosome
  • Deletion
  • Enterobacteria
  • Gene doctoring
  • Golden Gate assembly
  • Insertion
  • Mutagenesis
  • Recombineering

Cite this