TY - JOUR
T1 - CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties
AU - Zamoner, Luís Otávio B.
AU - Aragão-Leoneti, Valquíria
AU - Mantoani, Susimaire P.
AU - Rugen, Michael D.
AU - Nepogodiev, Sergey A.
AU - Field, Robert A.
AU - Carvalho, Ivone
N1 - Publisher Copyright:
© 2016 Elsevier Ltd. All rights reserved.
PY - 2016/6/24
Y1 - 2016/6/24
N2 - Protecting group-free synthesis of 1,2:5,6-di-anhydro-D-mannitol, followed by ring opening with propargylamine and subsequent ring closure produced a separable mix of piperidine N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and azepane N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol. In O-acetylated form, these two building blocks were subjected to CuAAC click chemistry with a panel of three differently azide-substituted glucose building blocks, producing iminosugar pseudo-disaccharides in good yield. The overall panel of eight compounds, plus 1-deoxynojirimycin (DNJ) as a benchmark, was evaluated as prospective inhibitors of almond β-glucosidase, yeast α-glucosidase and barley β-amylase. The iminosugar pseudo-disaccharides showed no inhibitory activity against almond β-glucosidase, while the parent N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol likewise proved to be inactive against yeast α-glucosidase. Inhibitory activity could be reinstated in the former series by appropriate substitution on nitrogen. The greater activity of the piperidine could be rationalized based on docking studies. Further, potent inhibition of β-amylase was observed with compounds from both the piperidine and azepane series.
AB - Protecting group-free synthesis of 1,2:5,6-di-anhydro-D-mannitol, followed by ring opening with propargylamine and subsequent ring closure produced a separable mix of piperidine N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and azepane N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol. In O-acetylated form, these two building blocks were subjected to CuAAC click chemistry with a panel of three differently azide-substituted glucose building blocks, producing iminosugar pseudo-disaccharides in good yield. The overall panel of eight compounds, plus 1-deoxynojirimycin (DNJ) as a benchmark, was evaluated as prospective inhibitors of almond β-glucosidase, yeast α-glucosidase and barley β-amylase. The iminosugar pseudo-disaccharides showed no inhibitory activity against almond β-glucosidase, while the parent N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol likewise proved to be inactive against yeast α-glucosidase. Inhibitory activity could be reinstated in the former series by appropriate substitution on nitrogen. The greater activity of the piperidine could be rationalized based on docking studies. Further, potent inhibition of β-amylase was observed with compounds from both the piperidine and azepane series.
KW - Click chemistry
KW - CuAAC reaction
KW - Glycosidase inhibition
KW - Pseudo-disaccharide iminosugars
UR - http://www.scopus.com/inward/record.url?scp=84992311395&partnerID=8YFLogxK
U2 - 10.1016/j.carres.2016.04.020
DO - 10.1016/j.carres.2016.04.020
M3 - Article
C2 - 27160849
AN - SCOPUS:84992311395
VL - 429
SP - 29
EP - 37
JO - Carbohydrate Research
JF - Carbohydrate Research
SN - 0008-6215
ER -