Abstract
D satellite RNA (satRNA) with its helper virus, namely, cucumber mosaic virus, causes systemic necrosis in tomato. The infected plant exhibits a distinct spatial and temporal cell death pattern. The distinct features of chromatin condensation and nuclear DNA fragmentation indicate that programmed cell death is involved. In addition, satRNA localization and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling show that cell death is initiated from the infected phloem or cambium cells and spreads to other nearby infected cells. Timing of the onset of necrosis after inoculation implicates the involvement of cell developmental processes in initiating tomato cell death. Analysis of the accumulation of minus- and plus-strand satRNAs in the infected plants indicates a correlation between high amounts of minus-strand satRNA and tomato cell death.
Original language | English |
---|---|
Pages (from-to) | 1079-1092 |
Journal | The Plant Cell |
Volume | 12 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2000 |