TY - JOUR
T1 - Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA
AU - Zhou, Liang
AU - Singleton, Chloe
AU - Hecht, Oliver
AU - Moore, Geoffrey R.
AU - Le Brun, Nick E.
PY - 2012/1
Y1 - 2012/1
N2 - CopA, a P‐type ATPase transporter involved in copper detoxification in Bacillus subtilis, contains two soluble Atx1‐like domains separated by a short linker at its N‐terminus, an arrangement that occurs widely in copper transporters from both prokaryotes and eukaryotes. Both domains were previously found to bind Cu(I) with very high affinity. Above a level of 1 Cu(I) per CopAab, dimerization occurred, leading to a highly luminescent multinuclear Cu(I) species [Singleton C & Le Brun NE (2009) Dalton Trans, 688–696]. To try to understand the contributions of each domain to the complex Cu(I)‐binding behaviour of this and related proteins, we purified a wild‐type form of the first domain (CopAa). In isolation, the domain bound Cu(I) with very high affinity (K = ∼ 1 × 1018 m−1) and underwent Cu(I)‐mediated protein association, resulting in a mixture of dimer and tetramer species. Addition of further Cu(I) up to 1 Cu(I) per CopAa monomer led to a weakly luminescent species, whereas further additions [2 Cu(I) per CopAa monomer] resulted in protein unfolding. Analysis of the MTCAAC binding motif Cys residue acid–base properties revealed pKa values of 5.7 and 7.3, consistent with the pH dependence of Cu(I) binding, and with the proposal that low proton affinity is associated with high Cu(I) affinity. Finally, Cu(I) exchange between CopAa and the chelator bathocuproine sulfonate revealed rapid exchange in both directions, demonstrating an interaction between the protein and the chelator that catalyses metal ion transfer. Overall, CopAa exhibits similarities to CopAab in terms of affinity and complexity of Cu(I) binding, but the details of Cu(I) binding are distinct.
AB - CopA, a P‐type ATPase transporter involved in copper detoxification in Bacillus subtilis, contains two soluble Atx1‐like domains separated by a short linker at its N‐terminus, an arrangement that occurs widely in copper transporters from both prokaryotes and eukaryotes. Both domains were previously found to bind Cu(I) with very high affinity. Above a level of 1 Cu(I) per CopAab, dimerization occurred, leading to a highly luminescent multinuclear Cu(I) species [Singleton C & Le Brun NE (2009) Dalton Trans, 688–696]. To try to understand the contributions of each domain to the complex Cu(I)‐binding behaviour of this and related proteins, we purified a wild‐type form of the first domain (CopAa). In isolation, the domain bound Cu(I) with very high affinity (K = ∼ 1 × 1018 m−1) and underwent Cu(I)‐mediated protein association, resulting in a mixture of dimer and tetramer species. Addition of further Cu(I) up to 1 Cu(I) per CopAa monomer led to a weakly luminescent species, whereas further additions [2 Cu(I) per CopAa monomer] resulted in protein unfolding. Analysis of the MTCAAC binding motif Cys residue acid–base properties revealed pKa values of 5.7 and 7.3, consistent with the pH dependence of Cu(I) binding, and with the proposal that low proton affinity is associated with high Cu(I) affinity. Finally, Cu(I) exchange between CopAa and the chelator bathocuproine sulfonate revealed rapid exchange in both directions, demonstrating an interaction between the protein and the chelator that catalyses metal ion transfer. Overall, CopAa exhibits similarities to CopAab in terms of affinity and complexity of Cu(I) binding, but the details of Cu(I) binding are distinct.
U2 - 10.1111/j.1742-4658.2011.08422.x
DO - 10.1111/j.1742-4658.2011.08422.x
M3 - Article
SN - 1742-4658
VL - 279
SP - 285
EP - 298
JO - FEBS Journal
JF - FEBS Journal
IS - 2
ER -