Cytotoxicity of pyrazine-based cyclometalated (C^Npz^C)Au(III) carbene complexes: Impact of the nature of the ancillary ligand on the biological properties

Benoît Bertrand, Julio Fernandez-Cestau, Jesus Angulo, Marco M. D. Cominetti, Zoe A. E. Waller, Mark Searcey, Maria A. O'Connell, Manfred Bochmann

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)
40 Downloads (Pure)


The synthesis of a series of cyclometalated gold(III) complexes supported by pyrazine-based (C^N^C)-type pincer ligands is reported, including the crystal structure of a cationic example. The compounds provide a new platform for the study of antiproliferative properties of gold(III) complexes. Seven complexes were tested: the neutral series (C^Npz^C)AuX [X = Cl (1), 6-thioguanine (4), C≡CPh (5), SPh (6)] and an ionic series that included the N-methyl complex [(C^NpzMe^C)AuCl]BF4 (7) and the N-heterocyclic carbene complexes [(C^Npz^C)AuL]+ with L = 1,3-dimethylbenzimidazol-2-ylidene (2) or 1,3,7,9-tetramethylxanthin-8-ylidene (3). Tests against human leukemia cells identified 1, 2, 3, and 4 as particularly promising, whereas protecting the noncoordinated N atom on the pyrazine ring by methylation (as in 7) reduced the cytotoxicity. Complex 2 proved to be the most effective of the entire series against the HL60 leukemia, MCF-7 breast cancer, and A549 lung cancer cell lines, with IC50 values down to submicromolar levels, associated with a lower toxicity toward healthy human lung fibroblast cells. The benzimidazolylidene complex 2 accumulated more effectively in human lung cancer cells than its caffeine-based analogue 3 and the gold(III) chloride 1. Compound 2 proved to be unaffected by glutathione under physiological conditions for periods of up to 6 days and stabilizes the DNA G-quadruplex and i-motif structures; the latter is the first such report for gold compounds. We also show the first evidence of inhibition of MDM2–p53 protein–protein interactions by a gold-based compound and identified the binding mode of the compound with MDM2 using saturation transfer difference NMR spectroscopy combined with docking calculations.
Original languageEnglish
Pages (from-to)5728–5740
Number of pages13
JournalInorganic Chemistry
Issue number10
Early online date25 Apr 2017
Publication statusPublished - 15 May 2017

Cite this