Abstract
The deformation of a circular, inextensible elastic cell is examined when the cell is placed into two different background potential flows: a uniform stream and a circulatory flow induced by a point vortex located inside the cell. In a circulatory flow a cell may deform into a mode m shape with m-fold rotational symmetry. In a uniform stream, shapes with two-fold rotational symmetry tend to be selected. In a weak stream a cell deforms linearly into an ellipse with either its major or its minor axis aligned with the oncoming flow. This marks an interesting difference with a bubble with constant surface tension in a uniform stream, which can only deform into a mode 2 shape with its major axis perpendicular to the stream (Vanden-Broeck & Keller, 1980b). In general, as the strength of the uniform stream is increased from zero, solutions emerge continuously from the cell configurations in quiescent fluid found by Flaherty et al. (1972). A richly populated solution space is described with multiple solution branches which either terminate when a cell reaches a state with a point of self-contact or loop round to continuously connect cell states which exist under identical conditions in the absence of flow.
Original language | English |
---|---|
Pages (from-to) | 665-684 |
Number of pages | 20 |
Journal | IMA Journal of Applied Mathematics |
Volume | 78 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Aug 2013 |
Keywords
- inviscid flow
- fluid-structure interaction
- elastic cell