TY - JOUR
T1 - Determination of amino acids that favour the αL region using Ramachandran propensity plots. Implications for α-sheet as the possible amyloid intermediate
AU - Hayward, Steven
AU - Milner-White, E. James
PY - 2021/6
Y1 - 2021/6
N2 - In amyloid diseases an insoluble amyloid fibril forms via a soluble oligomeric intermediate. It is this intermediate that mediates toxicity and it has been suggested, somewhat controversially, that it has the α-sheet structure. Nests and α-strands are similar peptide motifs in that alternate residues lie in the αR and γL regions of the Ramachandran plot for nests, or αR and αL regions for α-strands. In nests a concavity is formed by the main chain NH atoms whereas in α-strands the main chain is almost straight. Using “Ramachandran propensity plots” to focus on the αL/γL region, it is shown that glycine favours γL (82% of amino acids are glycine), but disfavours αL (3% are glycine). Most charged and polar amino acids favour αL with asparagine having by far the highest propensity. Thus, glycine favours nests but, contrary to common expectation, should not favour α-sheet. By contrast most charged or polar amino acids should favour α-sheet by their propensity for the αL conformation, which is more discriminating amongst amino acids than the αR conformation. Thus, these results suggest the composition of sequences that favour α-sheet formation and point towards effective prediction of α-sheet from sequence.
AB - In amyloid diseases an insoluble amyloid fibril forms via a soluble oligomeric intermediate. It is this intermediate that mediates toxicity and it has been suggested, somewhat controversially, that it has the α-sheet structure. Nests and α-strands are similar peptide motifs in that alternate residues lie in the αR and γL regions of the Ramachandran plot for nests, or αR and αL regions for α-strands. In nests a concavity is formed by the main chain NH atoms whereas in α-strands the main chain is almost straight. Using “Ramachandran propensity plots” to focus on the αL/γL region, it is shown that glycine favours γL (82% of amino acids are glycine), but disfavours αL (3% are glycine). Most charged and polar amino acids favour αL with asparagine having by far the highest propensity. Thus, glycine favours nests but, contrary to common expectation, should not favour α-sheet. By contrast most charged or polar amino acids should favour α-sheet by their propensity for the αL conformation, which is more discriminating amongst amino acids than the αR conformation. Thus, these results suggest the composition of sequences that favour α-sheet formation and point towards effective prediction of α-sheet from sequence.
U2 - 10.1016/j.jsb.2021.107738
DO - 10.1016/j.jsb.2021.107738
M3 - Article
VL - 213
JO - Journal of Structural Biology
JF - Journal of Structural Biology
SN - 1047-8477
IS - 2
M1 - 107738
ER -