Abstract
Purpose: Molecular epidemiological investigations of the highly clonal Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) are important in outbreak detection and in tracking disease transmission. In this study, we developed and evaluated a multiple-locus variable-number tandem-repeats (VNTR) analysis (MLVA) assay for characterization of S. Typhi isolates from sub-Saharan Africa.
Methodology: Twelve previously reported VNTR loci were evaluated and an MLVA assay consisting of five polymorphic loci was adopted. The MLVA assay was developed for use on capillary electrophoresis systems by testing a collection of 50 S. Typhi isolates. This S. Typhi strain panel consisted of six outbreak related isolates and 44 epidemiologically unlinked isolates. Amongst these were nine S.Typhi haplotype H58 isolates.
Results: The MLVA assay characterized the 50 isolates into 47 MLVA profiles while PFGE analysis of the same isolates revealed 34 pulsotypes. MLVA displayed higher discriminatory power (Simpson’s index of diversity (DI) 0.998 [95% confidence interval (CI) 0.995–1.000)] as compared to pulsed-field gel electrophoresis [Simpson’s DI 0.984 (95% CI 0.974–0.994)].
Conclusion: The MLVA assay presented in this study is a simple, rapid and more accessible tool that serves as a good alternative to other molecular subtyping methods for S. Typhi.
Methodology: Twelve previously reported VNTR loci were evaluated and an MLVA assay consisting of five polymorphic loci was adopted. The MLVA assay was developed for use on capillary electrophoresis systems by testing a collection of 50 S. Typhi isolates. This S. Typhi strain panel consisted of six outbreak related isolates and 44 epidemiologically unlinked isolates. Amongst these were nine S.Typhi haplotype H58 isolates.
Results: The MLVA assay characterized the 50 isolates into 47 MLVA profiles while PFGE analysis of the same isolates revealed 34 pulsotypes. MLVA displayed higher discriminatory power (Simpson’s index of diversity (DI) 0.998 [95% confidence interval (CI) 0.995–1.000)] as compared to pulsed-field gel electrophoresis [Simpson’s DI 0.984 (95% CI 0.974–0.994)].
Conclusion: The MLVA assay presented in this study is a simple, rapid and more accessible tool that serves as a good alternative to other molecular subtyping methods for S. Typhi.
Original language | English |
---|---|
Pages (from-to) | 937-945 |
Number of pages | 9 |
Journal | Journal of Medical Microbiology |
Volume | 66 |
Issue number | 7 |
DOIs | |
Publication status | Published - 19 Jul 2017 |
Keywords
- Salmonella Typhi
- MLVA
- sub-Saharan Africa
- VNTR