Differential epitope mapping by STD NMR spectroscopy to reveal the nature of protein–ligand contacts

Serena Monaco, Louise E. Tailford, Nathalie Juge, Jesus Angulo (Lead Author)

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)
14 Downloads (Pure)


Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP-STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D2O/H2O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP-STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket.
Original languageEnglish
Pages (from-to)15491–15495
Number of pages5
JournalAngewandte Chemie-International Edition
Issue number48
Early online date23 Oct 2017
Publication statusPublished - 27 Nov 2017


  • Protein-Ligand binding
  • Saturation transfer difference NMR
  • Fragment based drug design
  • Ligand pharmacophore
  • NMR spectroscopy

Cite this