TY - JOUR
T1 - Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata
AU - Boden, Rich
AU - Murrell, J. Colin
AU - Schäfer, Hendrik
PY - 2011/9
Y1 - 2011/9
N2 - Dimethylsulfide (DMS) is a volatile organosulfur compound, ubiquitous in the oceans, that has been credited with various roles in biogeochemical cycling and in climate control. Various oceanic sinks of DMS are known – both chemical and biological – although they are poorly understood. In addition to the utilization of DMS as a carbon or a sulfur source, some Bacteria are known to oxidize it to dimethylsulfoxide (DMSO). Sagittula stellata is a heterotrophic member of the Alphaproteobacteria found in marine environments. It has been shown to oxidize DMS during heterotrophic growth on sugars, but the reasons for and the mechanisms of this oxidation have not been investigated. Here, we show that the oxidation of DMS to DMSO is coupled to ATP synthesis in S. stellata and that DMS acts as an energy source during chemoorganoheterotrophic growth of the organism on fructose and on succinate. DMS dehydrogenase (which is responsible for the oxidation of DMS to DMSO in other marine Bacteria) and DMSO reductase activities were absent from cells grown in the presence of DMS, indicating an alternative route of DMS oxidation in this organism.
AB - Dimethylsulfide (DMS) is a volatile organosulfur compound, ubiquitous in the oceans, that has been credited with various roles in biogeochemical cycling and in climate control. Various oceanic sinks of DMS are known – both chemical and biological – although they are poorly understood. In addition to the utilization of DMS as a carbon or a sulfur source, some Bacteria are known to oxidize it to dimethylsulfoxide (DMSO). Sagittula stellata is a heterotrophic member of the Alphaproteobacteria found in marine environments. It has been shown to oxidize DMS during heterotrophic growth on sugars, but the reasons for and the mechanisms of this oxidation have not been investigated. Here, we show that the oxidation of DMS to DMSO is coupled to ATP synthesis in S. stellata and that DMS acts as an energy source during chemoorganoheterotrophic growth of the organism on fructose and on succinate. DMS dehydrogenase (which is responsible for the oxidation of DMS to DMSO in other marine Bacteria) and DMSO reductase activities were absent from cells grown in the presence of DMS, indicating an alternative route of DMS oxidation in this organism.
U2 - 10.1111/j.1574-6968.2011.02349.x
DO - 10.1111/j.1574-6968.2011.02349.x
M3 - Article
VL - 322
SP - 188
EP - 193
JO - FEMS Microbiology Letters
JF - FEMS Microbiology Letters
SN - 0378-1097
IS - 2
ER -