Direct inhibition of phosphate transport by immune signaling in Arabidopsis

Julian Dindas, Thomas A. DeFalco, Gang Yu, Lu Zhang, Pascale David, Marta Bjornson, Marie-Christine Thibaud, Valéria Custódio, Gabriel Castrillo, Laurent Nussaume, Alberto P. Macho, Cyril Zipfel

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

Soil availability of inorganic ortho-phosphate (PO 4 3−, P i) is a key determinant of plant growth and fitness. 1 Plants regulate the capacity of their roots to take up inorganic phosphate by adapting the abundance of H +-coupled phosphate transporters of the PHOSPHATE TRANSPORTER 1 (PHT1) family 2 at the plasma membrane (PM) through transcriptional and post-translational changes driven by the genetic network of the phosphate starvation response (PSR). 3–8 Increasing evidence also shows that plants integrate immune responses to alleviate phosphate starvation stress through the association with beneficial microbes. 9–11 Whether and how such phosphate transport is regulated upon activation of immune responses is yet uncharacterized. To address this question, we first developed quantitative assays based on changes in the electrical PM potential to measure active P i transport in roots in real time. By inserting micro-electrodes into bulging root hairs, we were able to determine key characteristics of phosphate transport in intact Arabidopsis thaliana (hereafter Arabidopsis) seedlings. The fast P i-induced depolarization observed was dependent on the activity of the major phosphate transporter PHT1;4. Notably, we observed that this PHT1;4-mediated phosphate uptake is repressed upon activation of pattern-triggered immunity. This inhibition depended on the receptor-like cytoplasmic kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and PBS1-LIKE KINASE 1 (PBL1), which both phosphorylated PHT1;4. As a corollary to this negative regulation of phosphate transport by immune signaling, we found that PHT1;4-mediated phosphate uptake normally negatively regulates anti-bacterial immunity in roots. Collectively, our results reveal a mechanism linking plant immunity and phosphate homeostasis, with BIK1/PBL1 providing a molecular integration point between these two important pathways.

Original languageEnglish
Pages (from-to)488-495.e5
Number of pages8
JournalCurrent Biology
Volume32
Issue number2
Early online date16 Dec 2021
DOIs
Publication statusPublished - 24 Jan 2022

Keywords

  • PHT1
  • electrophysiology
  • kinase
  • phosphate
  • plant immunity
  • root microbiome

Cite this